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Abstract

We address a 3D human pose estimation for equirectangular images taken by a wearable omnidirectional camera.
The equirectangular image is distorted because the omnidirectional camera is attached closely in front of a person’s
neck. Furthermore, some parts of the body are disconnected on the image; for instance, when a hand goes out to an
edge of the image, the hand comes in from another edge. The distortion and disconnection of images make 3D pose
estimation challenging. To overcome this difficulty, we introduce the location-maps method proposed by Mehta et
al.; however, the method was used to estimate 3D human poses only for regular images without distortion and
disconnection. We focus on a characteristic of the location-maps that can extend 2D joint locations to 3D positions
with respect to 2D-3D consistency without considering kinematic model restrictions and optical properties. In
addition, we collect a new dataset that is composed of equirectangular images and synchronized 3D joint positions
for training and evaluation. We validate the location-maps’ capability to estimate 3D human poses for distorted and
disconnected images. We propose a new location-maps-based model by replacing the backbone network with a
state-of-the-art 2D human pose estimation model (HRNet). Our model is a simpler architecture than the reference
model proposed by Mehta et al. Nevertheless, our model indicates better performance with respect to accuracy and
computation complexity. Finally, we analyze the location-maps method from two perspectives: the map variance and
the map scale. Therefore, some location-maps characteristics are revealed that (1) the map variance affects robustness
to extend 2D joint locations to 3D positions for the 2D estimation error, and (2) the 3D position accuracy is related to
the 2D locations relative accuracy to the map scale.

Keywords: 3D pose estimation, location-maps, Omnidirectional camera, Equirectangular image, Distortion,
Disconnection

1 Introduction
Human pose motion capture is widely used in some appli-
cations, for example, computer graphics for movies and
games, sports science, and sign language recognition. For
this purpose, easy and low-cost methods are needed to
capture the human posemotion. One of themainmethods
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is human pose estimation. In recent years, human pose
estimation has been actively researched, and deep neural
network (DNN) has achieved considerable attention.
In human pose estimation research, RGB or RGB-D

cameras are commonly used for input devices that take
videos, images, or depth data. The input data are typi-
cally taken from the second-person perspective, and the
data include approximate parts of the target person’s body.
DNN models estimate 2D or 3D joint positions from the
input data.
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Pose estimation methods for images taken from the
first-person perspective is called the “egocentric-view
pose estimation.” In the egocentric-view setting, images or
depth data are taken by body-attached devices. 3D pose
estimation for the egocentric-view inputs is portable and
trackable to a specific person. The 3D pose estimation,
however, usually captures only limited joints of the human
body because the input devices have a bounded angle
of view. Therefore, it is extremely difficult for a body-
attached camera to obtain images that include enough
information for whole joint estimation. Additionally, the
dynamic parts of the body (e.g., hands or feet) frequently
move out of the camera angle view. These conditions
make the estimation difficult.
We intend to apply 3D human pose estimation for sign

language recognition and translation. Sign language is the
visual communication method used by deaf people across
the world; however, each region has different signs, as with
oral language. Sign language is composed of some ele-
ments: handshapes, movements, positions, facial expres-
sions, and peripheral information. For example, when the
index finger points to something in sign language sen-
tences, the meaning changes depending on what it is
pointing to.
Some methods have been proposed for sign language

recognition and translation from images [1, 2]. Most exist-
ing research handle regular images that are taken from the
second-person perspective; thus, these approaches must
install a camera in front of a signer in use scene. To over-
come the restriction, we use a wearable camera for the
input device because the system is available everytime,
everywhere for signers.
An angle of the wearable camera view is not enough to

obtain information for sign language recognition because
sign language represents the meaning using a reachable
space by hands and peripheral information. For example,
a “head” of sign language is represented by pointing head
part by index finger. However, if the index finger points to
another person, the sign means “you” or “the person.” For
the reason above, the capability of capturing whole sur-
rounding view is necessary for the wearable camera in our

approach. Additionally, the tracking signer’s pose is also
important for sign language recognition because some
signs represent the meaning by relative positional relation
of body parts. For example, if the index finger points to
around own face or chest, the sign means “myself”.
We intend to propose a sign language recognition sys-

tem using a wearable omnidirectional camera for the
input device, which is portable for daily mobile use, and
capable of obtaining enough elements for sign language
recognition. As a first step for the system, we research 3D
human pose estimation models for an RGB image taken
by the wearable omnidirectional camera in this paper.
An omnidirectional camera can capture all surrounding

information on a plane image, which is converted to an
equirectangular image in our setting. We attach an omni-
directional camera to an area in front of a person’s neck to
obtain images including sign language elements: the face,
hands, and the peripheral environment. Figure 1 shows
the omnidirectional camera setting and the equirectangu-
lar image taken by the device. The omnidirectional camera
closely attached to the human body captures images that
have the following characteristics that are different from
regular images.

Distortion: Objects that are placed around the polar
points of the camera are displayed wider than the
true image.

Disconnection: Objects that are placed on the border
are divided into both edges of the image. Therefore,
some parts of the human body often do not connect.
For instance, when a hand goes out to an edge, the
hand comes in from another edge.

Our approach is based on a convolutional neural net-
work (CNN) similar to most of the recent monocular
3D human pose estimation methods. The existing meth-
ods, however, cannot apply well to our setting. First, their
training data were captured with regular cameras placed
at a position in which the cameras can capture almost the
whole body from the second-person perspective. Second,
most of the existing methods assume a skeletal structure
on the image plane when the methods extend 2D joint

Fig. 1 A wearable omnidirectional camera is closely attached in front of the neck (left) , and an image is taken by the camera (right)
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locations to 3D positions. For the reasons above, their
methods fail not only 3D pose estimation but also 2D esti-
mation, which is the basic step for 3D pose estimation,
for our distorted and disconnected images. Figure 2 shows
the estimation results of an existing 2D pose estimation
method and our model.
To overcome these difficulties, we collect a new dataset

captured by a wearable omnidirectional camera. More
importantly, we introduce the location-maps method that
is used to extend 2D joint locations to 3D positions in
VNect, which is the 3D human pose estimation model
proposed byMehta et al. [4]. Themethod does not assume
human body structures, and separately derives each x,
y, and z position in 3D coordinates from 2D joint loca-
tions. Therefore, the location-maps method can reduce
the impact of optical properties, which are the distortion
and disconnection of equirectangular images. Xu et al.
[5] indicated valid results of VNect for distortion images
taken by a fish-eye camera placed at a position close to the
body.
We validate that the location-maps method has the

capability to estimate 3D joint positions with not only
distortion but also disconnection caused by the wear-
able omnidirectional camera. Furthermore, we propose a

new estimation model using the location-maps method
by replacing the backbone network with a state-of-the-
art 2D pose estimation model [6]. Our model is a simpler
architecture than VNect, which proposed the location-
mapsmethod. In the Section 5, we evaluate our model and
VNect in terms of accuracy and computation complexity.
In the Section 6, we analyze the location-maps charac-
teristics from two perspectives: the map variance and the
map scale.
To the best of our knowledge, our work is the first

approach to estimate 3D human poses from an omnidirec-
tional camera closely attached to the body. Although the
proposed method is a combination of existing techniques,
our work is practical and useful from an application view-
point. The contributions of this paper are summarized as
follows:

• We collect a new sign language dataset that is
composed of equirectangular images and
synchronized 3D joint positions. The equirectangular
images are taken by a wearable omnidirectional
camera in our setting.

• We propose a new 3D human pose estimation model
using the location-maps method for distortion and

Fig. 2 Openpose [3], which is a 2D human pose estimator, fails the left wrist and nose on an image captured by our camera setting (top). Our model
can estimate whole joints, including the left wrist and the left hand, which are disconnected on the image (bottom). This image shows the result of
relocated 3D pose estimation on the 2D plane
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disconnection images. The model is a simpler
architecture than VNect, which is the reference
model. Nevertheless, our model’s performance is
better with respect to accuracy and computation
complexity.

• We reveal the location-maps characteristics that (1)
the map variance affects robustness to extend 2D
joint locations to 3D positions for the 2D estimation
error, and (2) the 3D position accuracy is related to
the 2D locations relative accuracy to the map scale.

2 Related works
Human pose estimation has been researched on
learning-based and model-based approaches from var-
ious resources— RGB images, depth data, or MoCap
data—and considerable recent progress has been achieved
through CNN-based approaches. Our goal is to estimate
the 3D human pose for RGB equirectangular images,
which are distorted and disconnected, taken by a wearable
omnidirectional camera. We discuss relevant approaches
to estimate 3D human poses for RGB images.
One of the methods directly estimates 3D human poses

for RGB images. Gerard et al. [7] and Catalin et al. [8] pro-
posed models based on the relative positional relationship
of human body parts. However, most direct estimation
models are CNN-based to estimate 3D human poses [9–
15], and then applied to subinformation to improve accu-
racy. Du et al. [11] proposed applying height maps gen-
erated with precalibrated monocular cameras. The height
maps represent the length of human parts for input. Tekin
et al. [10] fused confidence maps of 2D joint locations
to 3D human pose estimation. Zhou et al. [15] fitted a
kinematic model restriction to direct estimation.
However, the mainstreammethod extends 2D represen-

tations for RGB images to 3D human poses. The repre-
sentations are extracted as silhouettes [16], body shapes
[17, 18], or joint locations [4, 19–24]. In these methods,
the quality of 2D representations directly affects the accu-
racy of 3D human pose estimation. CNN-based models
[6, 25–28] proposed high-quality estimation methods of
2D joint locations for RGB images. These methods rep-
resent the confidence in joint locations on 2D planes as
heatmaps.
Themethods to extend 2D representations to 3D human

poses generally use a kinematic model including restric-
tions of the human body [17, 20–23]. However, we intro-
duce the location-maps method for our approach, which
was proposed by Mehta et al. [4, 24] to extend 2D joint
locations to 3D positions. The location-maps are gener-
ated to the x, y, and z positions as 2D planes without
kinematic model restrictions and consideration of optical
properties for the wearable omnidirectional camera.
As the most related research, Xu et al. [5] proposed

a 3D human pose estimation model for single fish-eye

camera images attached at a hat brim. The images are
distorted because the fish-eye camera is closely attached
to the body. The method extends 2D joint locations to 3D
positions considering the optical properties for fish-eye
camera settings. In their experiments, the validity of the
location-mapsmethod for distorted images was indicated.

3 Data collection
We collect a new dataset composed of RGB equirectangu-
lar images and synchronized 3D joint positions. We make
the dataset following steps (1) and (2). (1) RGB equirect-
angular images are taken by an omnidirectional camera
that is closely attached in front of a person’s neck. The
omnidirectional camera captures the complete surround-
ing information, including the face, hands, and other
upper body parts on the RGB equirectangular image. (2)
We capture 3D upper body joint positions simultane-
ously by skeleton estimation. The skeleton is obtained
from RGB-D camera data for the person to whom the
omnidirectional camera is attached.

3.1 Format
RGB equirectangular images: We collect equirectan-

gular images with the fixed pole axis of an omnidi-
rectional camera. At the setup of the camera with
body attachment, we set the pole axis to be perpen-
dicular to the ground. Therefore, the center joints
(head, neck, torso, and waist) will always be around
the centerline of the width on images, even if the
body and the camera tilt. The omnidirectional cam-
era captures RGB equirectangular images in the
aspect ratio of 1:2.

3D joint positions: We collect the 12 joint positions
listed below as the upper body pose in 3D coordi-
nates.

Center: Head, neck, torso, waist
Left: Left shoulder, left elbow, left wrist, left hand
Right: Right shoulder, right elbow, right wrist, right

hand

In the collection scheme, we normalize the joint
positions by the steps outlined below to simplify data
handling.

1 Move all joints’ absolute coordinates to relative
coordinates with the camera position as root,
where the camera position is manually fixed in
a position that moves forward (shoulder width
multiplied by 0.4) and downward (shoulder
width multiplied by 0.1) from the neck. We
determined the position according to actual
camera position.

2 Rotate all joints’ coordinates around the root
position according to the shoulder line to be



Miura and Sako IPSJ Transactions on Computer Vision and Applications            (2020) 12:4 Page 5 of 17

parallel to the x-axis. The foreside of skeleton
faces the −z orientation after the rotation.

3 Rotate all joints’ coordinates around the root
position according to the line connected neck
and torso to be parallel to the y-axis.

4 Move all joints’ coordinates to enlarge or
shrink according to the Euclidean distance
between shoulders (shoulder width) to be 1.0.
The joint positions are determined by

w = ||Pl_shoulder − Pr_shoulder||,
Pj = Pj ÷ w,

where Pj indicates the position of joint j in 3D
coordinates. Pj is composed of xj, yj, and zj.

We show examples of an equirectangular image and
normalized 3D joint positions collected simultaneously in
Fig. 3. Note that 2D joint locations on the equirectan-
gular image are derived from 3D joint positions relative
to the omnidirectional camera position according to the
equirectangular projection [29].

3.2 Collection system
The data collection system is made of the main compo-
nents listed below.

• Omnidirectional camera: Ricoh R Development Kit
• RGB-D camera: Intel RealSense Depth Camera D435
• Skeleton estimation software: Nui Track ver 1.3.5 (on

Windows x64)

We hang an attachment device for the omnidirectional
camera around a person’s neck and then put the camera
on the attachment. Therefore, the camera lens is placed in
front of the neck in our setting. We take the person who
is attached to the omnidirectional camera with the RGB-
D camera from the second-person perspective. 3D joint
positions are collected by the skeleton estimation software
from the RGB-D camera.We illustrate the entire hardware
setting of the data collection system in Fig. 4.
The data collection system simultaneously obtains an

equirectangular image and 3D joint positions, and then
converts the data according to each format that is defined
in Section 3.1. Note that the skeleton estimation software
occasionally fails to obtain 3D joint positions if a part of
the human body has occlusions or is hidden. To deal with
the unstable estimation, the collection system records the
data only when the software succeeds to obtain all 3D
joint positions; therefore, the frame rate of the dataset is
not constant. The inconstant frame rate, however, is not a
serious problem because the 3D human pose is estimated
independently for each frame, without consideration of
sequentiality, in our model.

3.3 Dataset detail
We use Japanese sign language motions as collecting data.
We compose 16 example sentences that cover all of the
hand position and movement definitions in a dictionary.
The examples cover all 22 classes of hand positions, all 7
classes of hand movements, and 38 classes of handshapes
in 59 classes. We select as many classes of handshapes
as possible when composing examples to cover the hand
position and movement definitions. The example sen-
tences have 75 sign language words without overlapping.
We record the motions for 7 actors according to the 16

example sentences with the data collection system. Actors
perform the sentences 3 or 4 times for each example. We
do not specify clothes and eye-glasses that actors should
wear. We conduct a leave-one-person-out cross validation
for Section 5. We make datasets for each actor: the test
data is an actor’s data; the training and validation data are
other 6 actors’ data. The other 6 actor’s mixed data are
allocated to 5:1 into training and validation. We show the
collected datasets in Table 1.
We collected 27,077 frames as test dataset-A at first.We,

however, reduced the volume to 18,050 because we con-
cerned the impact of quantitative imbalance to calculate
results according to evaluation metrics. In the reduction
step, we uniformly sampled the frames following the time
sequence. Other test datasets are used original volume of
collection.

4 Approach
Our work is 3D human pose estimation for equirectan-
gular images taken by a wearable omnidirectional camera
closely attached in front of a person’s neck. We intend to
apply this method to a sign language recognition system
because of portability and capability to obtain sign lan-
guage elements on 2D images: handshapes, movements,
positions, facial expressions, and peripheral information.
The equirectangular images are distorted and discon-
nected caused by the omnidirectional camera and close
distance to the body. The distortion and disconnection
make the 3D human pose estimation challenging.
We address the challenge by introducing the location-

maps method that was proposed by Mehta et al. [4, 24]:
however, they only proposed the location-maps to esti-
mate 3D human poses for regular images without distor-
tion and disconnection. Furthermore, we apply a state-
of-the-art 2D human pose estimation model [6] as the
backbone network to the location-maps for improvement
of simplicity and accuracy.

4.1 The location-maps for 3D human pose estimation
location-maps method is one of the methods for extend-
ing 2D joint locations to 3D positions with respect to
2D-3D consistency on an image plane. In the VNect [4]
model, the network generates 4 maps: heatmap H, and
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Fig. 3 An equirectangular image (top) and (bottom) normalized 3D joint positions

location-maps X, Y, and Z for each joint in the final stage.
Then, 3D joint positions are derived from a combination
of 4 maps.
The heatmap represents the confidence in each 2D

joint location as a 2D probability distribution, and thus,
a joint location is determined at the maximum cell in the
heatmap. The 3D joint positions are derived according to
the value of location-maps at the same 2D joint locations
that were determined by the heatmap. To represent as a

formulation, for each joint j ∈ J , where J is the number of
joints, joint positions xj in the 3D coordinates are

rowj, colj = argmax
(
Hj

)
, (1)

xj = Xj
(
rowj, colj

)
, (2)

where Hj and Xj indicate the heatmap and the x location-
map respectively, and argmax is the function that outputs
indexes of row and column at the maximum cell in the

Fig. 4 Hardware setting of the data collection system
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Table 1 The collected datasets. The number indicates the
volume of data. The test data is an actor’s data(dataset ID’s actor).
The training and validation data are comprised of other 6 actors’
mixed data

Dataset Test Training Validation

A 18,050 94,713 18,943

B 17,045 95,550 19,111

C 19,754 93,293 18,659

D 17,695 95,009 19,002

E 19,320 93,655 18,731

F 20,627 92,565 18,514

G 19,215 93,742 18,749

heatmap. We visualize the scheme for estimating 3D joint
positions using heatmaps and location-maps in Fig. 5.
In the training session, the model studies to regress a

heatmap Hj to a 2D Gaussian map that indicates the con-
fidence in 2D joint location over the input image for each
joint. location-maps Xj,Yj, and Zj are also studied. For 3D
joint positions xj, yj, and zj, the L2 loss formulation for xj is

Loss
(
xj

) = ||HGT
j ⊗

(
Xj − XGT

j

)
||2, (3)

where GT indicates the ground truth, ⊗ is the Hadamard
product, and XGT

j is the uniform distribution of xj. The
location-maps loss formulation indicates that the loss is
weighted stronger around the 2D joint location by the
ground truth heatmap HGT

j .
The most important characteristic of the location-maps

method is that the maps are studied according to only 2D-
3D consistency that consists of 2D joint locations and 3D
joint positions xj, yj, and zj. Therefore, the location-maps
can extend 2D joint locations to 3D positions without
causing the effect of image distortion and disconnection
because the method does not study the optical proper-
ties of input images and restrictions of the human body
structure on the location-maps in the training session.
We focus on the beneficial characteristics of the location-
maps method, which did not mention the distortion and
disconnection of images in the reference paper.

4.2 Proposedmodel
Mehta et al. [4] used the ResNet-based [30] architecture
as the backbone network in the VNect model. ResNet
has been widely used as the base network architecture for
image recognition research in recent years. Mehta et al.
replaced the layers of ResNet from res5a onwards with
their own architecture including intermediate supervi-
sions that represent the bone length for each joint.
We replace the backbone network with the high-

resolution network (HRNet) of Ke et al. [6] for a 3D
human pose estimation model using the location-maps

method. HRNet is a state-of-the-art 2D human pose esti-
mation model for images. The HRNet maintains high-
resolution representations through the whole process,
while conducting multi-scale fusions such that the high-
to-low resolution representations of subnetworks that are
produced in each stage.
Our model estimates heatmaps and location-maps that

are potentially more accurate and spatially more precisely
by replacing the backbone network with the HRNet. In
addition, our model is a simpler architecture because it
does not include intermediate supervisions of bone length
as in the VNect.

5 Performance evaluation
We evaluate our model compared with the VNect of
Mehta et al. [4], which is a reference 3D human pose esti-
mation model using the location-maps method. In addi-
tion, we confirm that our model can estimate 3D human
poses for distorted and disconnected images. Mehta et
al. experimented with their model based on ResNet50
and ResNet100 as the backbone network. They proposed
that the ResNet50-based model is more reasonable with
respect to accuracy and computation complexity. We
implement our model with the parameter size and the
computation complexity according to the experiments.

5.1 Implementation and training for model
We apply HRNet-W24 and HRNet-W32 with our back-
bone network in our evaluation, where 24 and 32 repre-
sent the widths (channel) of the feature maps respectively.
We implement 4 stages of the high-resolution network.
Therefore, the widths of the other three parallel sub-
networks are 48, 96, and 192 for the HRNet-W24-based
model and 64, 128, and 256 for the HRNet-W32-based
model. Figure 6 illustrates the architecture of our model
based on HRNet-W24.
We train our model and the VNect with the training

dataset. The schedule is set to a batch size of 64 and 50
epochs. The input image size is fixed at 96 (height) ×192
(width), and the variance in heatmaps are set to 1.0 in
both models. We use the Adam optimizer [31], and set the
initial learning rate at 0.001.

5.2 Results and evaluation
We use mean per joint position error (MPJPE) met-
rics and percentage of correct keypoints (PCK) met-
rics for evaluation. The error is the Euclidean distance
between estimation and ground truth of joint position
in 3D coordinates, where the shoulder width is 1.0
because of 3D joint position normalization when collect-
ing the dataset. PCK metrics indicate a percentage of
correct joint that the estimation error is below a thresh-
old. Note that PCK is a more robust measure because
MPJPE is heavily influenced by large outliers. In addition,
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Fig. 5 Scheme of estimating 3D human poses using heatmaps and location-maps. The CNN regression model generates heatmaps and
location-maps for each joint from an input RGB image. The 3D coordinate joint positions are estimated from their location-maps Xj , Yj , and Zj at the
location of the maximum in the heatmap Hj

MPJPE has possibility to indicate better results for mod-
els that estimate shivering pose around average posi-
tion. Therefore, PCK is more adequate metrics to eval-
uate 3D human pose estimation. Reference papers [4,
6] also mainly evaluate the model performance by PCK
metrics.
Table 2 shows the MPJPE performance, and Table 3

shows the PCK performance on the validation and test
datasets. In the validation dataset, the actors are the same
persons as in the training dataset; however, the data are
not included in the training scheme, and the actor of the
test dataset is not included in the training dataset. For the

reasons above, the test dataset is more difficult than the
validation dataset.
The output map scale is double that of VNect in our

model because of the HRNet-backbone’s merit that gen-
erates high-resolution maps. We compare the models that
output different scale maps from same scale inputs for
evaluating the backbone characteristics.
Our model (HRNet-W24) is larger than

VNect(ResNet50); however, our model is more efficient
in terms of model size (#Params) and computation
complexity (GFLOPs). In the MPJPE metrics (Table 2),
our model is slightly better on the validation dataset; in

Fig. 6 The network architecture of our model based on HRNet-W24. The stem net convolutes input images to 256 (channel) ×24 (input height /4)
×48 (input width /4) regardless of the number of W. The network makes branches after the stem net according to W. The number of output maps is
48 because of 4 maps (H, X, Y, and Z) for each of the 12 joints in our setting
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Table 2 MPJPE performance comparison on the validation and test dataset. The table shows some parts of joints in detail, however
the All includes other joints (head, neck, torso, and waist). Lower value is better in this metrics

Model Backbone In-scale Out-scale Var. #Params GFLOPs Shoulders Elbows Wrists Hands All

Validation dataset

VNect ResNet50 96 x 192 12 x 24 1.0 14.5 M 1.70 0.019 0.053 0.069 0.079 0.044

VNect ResNet100 96 x 192 12 x 24 1.0 33.5 M 2.97 0.019 0.052 0.067 0.076 0.043

Ours HRNet-W24 96 x 192 24 x 48 1.0 16.7 M 1.70 0.015 0.044 0.060 0.069 0.037

Ours HRNet-W32 96 x 192 24 x 48 1.0 29.3 M 2.70 0.015 0.045 0.062 0.069 0.038

Test dataset

VNect ResNet50 96 x 192 12 x 24 1.0 14.5 M 1.70 0.040 0.218 0.387 0.439 0.201

VNect ResNet100 96 x 192 12 x 24 1.0 33.5 M 2.97 0.037 0.215 0.379 0.434 0.200

Ours HRNet-W24 96 x 192 24 x 48 1.0 16.7 M 1.70 0.040 0.215 0.395 0.467 0.204

Ours HRNet-W32 96 x 192 24 x 48 1.0 29.3 M 2.70 0.036 0.202 0.393 0.463 0.201

The best performance estimations are italicized

contrast, VNect is slightly better on the test dataset. Turn
into the PCKmetrics (Table 3), our model indicates better
performance on both of validation and test dataset. Thus,
our model estimates 3D joint positions closer to ground
truth; however, the model has possibility to obtain the
larger outliers for unknown dataset. The outlier estima-
tion causes the deterioration of MPJPE for our model.
For the discussion above, our model based on HRNet
performs better with respect to accuracy and computa-
tion complexity from the viewpoint of PCK metrics that
is generally used to evaluate the performance of 2D/3D
pose estimation.
We present some estimation results for distorted and

disconnected images by our model (HRNet-W24) on the
test dataset in Fig. 7. The blue line indicates the ground
truth of the 3D human pose, and the red line indicates the

Table 3 PCK performance comparison on the validation and test
dataset. The table shows the thresholds of 0.1, 0.2, and 0.3. Higher
value is better in this metrics

Model Backbone PCK @ 0.1 PCK @ 0.2 PCK @ 0.3

Validation dataset

VNect ResNet50 91.98 98.53 99.56

VNect ResNet100 92.42 98.64 99.60

Ours HRNet-W24 94.02 98.79 99.60

Ours HRNet-W32 93.91 98.75 99.59

Test dataset

VNect ResNet50 48.11 65.74 77.63

VNect ResNet100 49.49 67.01 78.11

Ours HRNet-W24 49.65 67.07 77.89

Ours HRNet-W32 50.45 68.09 79.12

The best performance estimations are italicized

estimation results. As shown in the figure, the location-
maps method can estimate 3D human poses even if the
images are distorted and disconnected.

5.3 Discussion for results andmodels
We discuss differences between proposed model and
VNect in detail by estimation results. Figure 8 shows
success and failure examples of models’ estimation respec-
tively in MPJPE metrics. The estimation deterioration has
tendencies to occur when the input images has the occlu-
sion and difficult view of hand by overlapping or distance
from the camera. The deterioration tendencies, however,
are found in common of both model’s results. We cannot
find clear differences and tendencies in the input images
between proposed model and VNect.
For the further discussion, we indicate heatmaps and

location-maps generated from the same success and fail-
ure cases in Fig. 9. The maps are shown of only worst joint
in the failure examples, and the right hand joint maps are
shown in the success. The ground truth of location-maps
are uniform distributions of x, y, and z values of the joint
position. Note that VNect maps are displayed on a dou-
ble scale for easy comparison. From comparing heatmaps
between success and failure cases, the poor heatmap esti-
mation obviously cause to deteriorate the 3D joint posi-
tion estimation. Turn into comparison of location-maps,
we can find a tendency that VNect generates slight wider
area close to ground truth in the location-maps. The wider
area generation leads robustness to heatmaps deteriora-
tion when extending 2D locations to 3D positions by the
location-maps. Therefore, the failure of 3D pose estima-
tion is caused by heatmaps estimation deterioration in
both model. VNect, however, reduces the impact by the
more robust location-maps; in contrary, proposed model
is influenced more by heatmaps deterioration. Relative
heatmap variance to the map scale determines how wide
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Fig. 7 Estimation results and ground truth for distorted and disconnected images. These results are estimated by our model(HRNet-W24) on the
test dataset

the model generates area close to ground truth in the
location-maps. We analyze the relationship of heatmap
variance and location-maps robustness in Section 6.2.
From the discussion above and PCK evaluation, we

believe that proposed model indicates better perfor-
mance than VNect under the condition that the heatmaps

estimation is success, because the backbone network
(HRNet) is more rich architecture that repeatedly con-
ducts multi-scale fusions such that the high-to-low res-
olution representations. In contrary, our model indicates
poor performance than VNect under the condition that
the heatmaps estimation is deteriorated, because the
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Fig. 8 Estimation and ground truth examples in success (left column) and failure (right column) cases. The upper row shows VNect (ResNet50)
results, and the lower shows our model (HRNet-W24)

location-maps have lower robustness for heatmaps deteri-
oration.

6 location-maps analysis
We conduct additional experiments to analyze the charac-
teristics of the location-maps method from two perspec-
tives. In the first perspective, we focus on the value of
heatmap variance because our model is trained accord-
ing to the loss formulation (3) that is composed of the
location loss weighted by the heatmap. Therefore, the
value of heatmap variance directly affects the generation
of location-maps. Second, we change the output scale of
our model according to the scale level of HRNet. The
scale of maps affects the spatial precision of heatmaps and
location-maps generated by our model.

6.1 Implementation and training
Wemodify the HRNet-W24 based model according to the
analysis perspectives. The heatmap variance is changed to
4.0 and 8.0, while other parameters are the same as the
base model. Additionally, we reimplement the location-
maps section in Fig. 6 to 2x-scale and 4x-scale; thus, the
output scale is 12 ×24 in the 2x-scale model, and the 4x-
scale model is 6 ×12. Overall, we train and evaluate the

basemodel and the 4 additional models that are 2 different
variances and 2 different scales.
We use transfer learning and fine-tuning for these 5

models because of the reducing effect of the initial param-
eter for analysis. The trained parameter in the Section 5
is set to all models as the initial parameter, and then, fine-
tuning is conducted with the dataset-A until 30 epochs
with the batch size of 64. Other training parameters are
the same as in the Section 5.

6.2 Analysis for the variance in maps
Table 4 shows the MPJPE results of the base model (var.
1.0) and the different variance models(var. 4.0 and 8.0) on
the validation and test dataset-A. The error is nothing for
the neck because the joint is the root position from our
setting that the omnidirectional camera is set around the
neck.
Considering the accuracy of each joint, the results indi-

cate a tendency in which the smaller variance model
estimates better for the static joints (e.g., head, torso, and
waist); however, the larger variance model estimates bet-
ter for the dynamic joints (e.g., wrists and hands). In the
mean of all joints, the smaller variance’s result is better on
the validation dataset-A, and vice versa on the test dataset-
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Fig. 9 Heatmaps and location-maps for input images in the same success and failure cases of Fig. 8. The maps are shown of only worst joint in the
failure examples, and the right hand joint maps are shown in the success. The ground truth of location-maps are uniform distributions of x, y, and z
values of the joint position. The measures of value for heatmaps and location-maps are shown below the table. Note that VNect maps are displayed
on a double scale for easy comparison
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Table 4 MPJPE performance comparison in different variances (1.0, 4.0, and 8.0) of heatmap on the validation and test datasets-A

Model Backbone Var. Head Neck Torso Waist Shoulders Elbows Wrists Hands All

Validation dataset-A

Ours (var. 1.0) HRNet-W24 1.0 0.018 0.000 0.021 0.022 0.012 0.037 0.051 0.058 0.031

Ours (var. 4.0) HRNet-W24 4.0 0.029 0.000 0.022 0.018 0.016 0.034 0.045 0.051 0.030

Ours (var. 8.0) HRNet-W24 8.0 0.048 0.000 0.031 0.031 0.025 0.051 0.054 0.062 0.041

Test dataset-A

Ours (var. 1.0) HRNet-W24 1.0 0.052 0.000 0.053 0.066 0.029 0.160 0.296 0.349 0.153

Ours (var. 4.0) HRNet-W24 4.0 0.048 0.000 0.050 0.066 0.027 0.154 0.285 0.325 0.146

Ours (var. 8.0) HRNet-W24 8.0 0.052 0.000 0.051 0.061 0.026 0.157 0.289 0.329 0.147

The best performance estimations are italicized

A. According to the results above, the larger variance
model has the robustness to estimate 3D joint positions
for the difficult data that are the unknown or the dynamic
joints.
In addition, we look at more detail of heatmaps and

location-maps generated by the model. Figure 10 presents
the maps of right hand that are generated for an image.
Note that the measures of value for heatmaps are different
scales in each variance model.
The location-maps in Fig. 10 indicate that the larger

variance model generates smoother and more spacious
location-maps than the smaller variancemodel. For exam-
ple, the x position of the right hand for the input image
is between −0.1 and 0.0 referred from the heatmap and
x location-map in the model (var. 1.0). The larger models
(var. 4.0 and 8.0) generate the x location-map in which the
value range between −1.0 and 0.0 occupies a wider area
on each x location-map. Therefore, changing the value of
heatmap variance affects the robustness of location-maps
for the estimation error of 2D location by the heatmaps.
In contrast, considering the heatmaps in Fig. 10, the

heatmaps of the larger variance model are also gener-
ated more smoothly, which means a smaller value gap
between each cell on the map. Therefore, the larger vari-
ancemodel potentially includesmore error to estimate the
2D joint location by the heatmap, and thus, the value of
heatmap variance affects the accuracy of 2D joint location
estimation.
The location-maps method derives 3D joint positions

with heatmaps and location-maps. If the model has a large
variance, the model generates robust location-maps and
estimates better than the small variance model for the
dynamic joints such as hands and wrists. However, the
excessive enlargement of variance causes the accuracy to
decrease for 2D joint location estimation, which leads to a
decrease in the accuracy of 3D human pose estimation.

6.3 Analysis for the scale of maps
Figure 11 indicates the L2 loss transition on the validation
dataset-A for the different scale models(1x, 2x, and 4x)

in the training session. In the graph, the 4x-scale and 2x-
scale model fall into a local solution after approximately 9
and 10 epochs. We believe that the behavior caused by the
reduction in representation capability because the map
scale is shrinking. In this analysis section, we use the 4x-
scale model at the 16 epoch and the 2x-scale model at the
28 epoch, which are the least L2 loss model during the
training session.
Table 5 shows the MPJPE results for the base model (1x)

and the different scale models (2x and 4x). On the vali-
dation dataset-A, the larger scale model estimates better
than the smaller scale model. This tendency is clearly dif-
ferent from the different variance models. However, the
smaller scale model indicates better results on the test
dataset-A according to the mean of all joints; however, the
clear tendency is not found for each joint.
Figure 12 illustrates the mean L2 distance error for the

different scale models on the test dataset-A. The left graph
indicates the 3D joint position error (3DJPE) for all joints,
and the center is the 2D joint location error (2DJLE) that
is estimated by the only heatmaps, where a cell on the
heatmaps is 1.0. The right graph indicates the standard-
ized 2D joint location error (std2DJLE) that applied a
coefficient considering each map scale with the 2DJLE. In
the 2x-scale model, the std2DJLE for each joint j ∈ J is

rowj, colj = argmax
(
Hj

)
,

errorrow = |
(
rowj − rowGT

j

)
× 2|,

errorcol = |
(
colj − colGTj

)
× 2|,

std2DJLE(j) =
√
error2row + error2col,

where argmax is the function that outputs the indexes of
row and column at the maximum cell in the heatmap, and
GT indicates the ground truth.
The 2DJLE proportionally decreases according to the

heatmap scale in the center graph; however, the 3DJPE
is more related to the std2DJLE from the left and right
graphs. Thus, shrinking the scale of maps reduces the
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Fig. 10 Heatmaps and location-maps for an input image by each variance model (var.1.0, var.4.0, and var.8.0). Note that the measures of value for
heatmaps are different scales, unlike location-maps measures

Fig. 11 The L2 loss transition on the validation dataset-A during fine-tuning for the different scale models(1x, 2x, and 4x). The 4x-scale and 2x-scale
model fall into a local solution after approximately 9 and 10 epochs
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Table 5 MPJPE performance comparison in different scales (1x, 2x, and 4x) of maps on the validation and test datasets-A

Model Backbone Out-scale Head Neck Torso Waist Shoulders Elbows Wrists Hands All

Validation dataset-A

Ours (1x) HRNet-W24 24 x 48 0.018 0.000 0.021 0.022 0.012 0.037 0.051 0.058 0.031

Ours (2x) HRNet-W24 12 x 24 0.019 0.000 0.019 0.021 0.013 0.039 0.052 0.059 0.032

Ours (4x) HRNet-W24 6 x 12 0.023 0.001 0.022 0.024 0.017 0.043 0.055 0.064 0.036

Test dataset-A

Ours (1x) HRNet-W24 24 x 48 0.052 0.000 0.053 0.066 0.029 0.160 0.296 0.349 0.154

Ours (2x) HRNet-W24 12 x 24 0.053 0.000 0.051 0.071 0.030 0.170 0.330 0.379 0.166

Ours (4x) HRNet-W24 6 x 12 0.050 0.000 0.051 0.065 0.036 0.166 0.298 0.338 0.153

The best performance estimations are italicized

absolute value of the 2DJLE. However, the absolute error
does not directly affect the 3D joint position estimation.
In other words, the 2D joint location relative accuracy to
the scale of maps affects the 3D human pose estimation.

7 Conclusion and future work
We collected a new dataset that is composed of equirect-
angular images taken by a wearable omnidirectional cam-
era and synchronized 3D joint positions. The setting of
device selection and attachment position was determined
according to intention to apply to sign language recogni-
tion in the future.
We validated the capability of the location-maps

method to estimate 3D human poses for equirectan-
gular images including distortion and disconnection, of
which the characteristics of the location-maps were not

mentioned in Mehta et al. [4]. Furthermore, we pro-
posed a new 3D human pose estimation model using the
location-mapsmethod by replacing the backbone network
with a state-of-the-art 2D human pose estimation model
(HRNet). Our model is a simpler architecture than the
reference model. Nevertheless, our model indicates better
performance with the aspect of accuracy and computation
complexity.
We introduced MPJPE and PCK metrics to evaluate

3D human pose estimation. We think that PCK is bet-
ter metrics in the point of view that can indicate whether
an estimation result fits to a sign language pose under
a threshold in contrast with MPJPE indicting how far
distance. In the future, we intend to apply this tracking
system to sign language recognition although we mainly
studied 3D human pose estimation in this paper.

Fig. 12 The bar graphs indicate the mean L2 distance error for all joints on the test dataset-A. The 3D joint position errors are estimated by different
scale models (left). The 2D joint location errors are estimated by only the heatmaps in each model, where a cell on the heatmaps is 1.0 (center). The
2D joint location errors are standardized considering the differences of each map scale (right)
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In addition, we revealed the characteristics of the
location-maps method. (1) The variance in heatmaps
affects the robustness of the location-maps, and thus,
enlargement of the variance leads to robustly extending
2D joint locations to 3D positions for the 2D estima-
tion error by heatmaps. However, excessive enlargement
causes to reduce the accuracy in 2D joint location estima-
tion by heatmaps more than robustness of location-maps.
(2) The shrinking scale of maps decreases the absolute
value of the 2D joint location error; however, the reduc-
tion in absolute value does not directly affect 3D human
pose estimation. The accuracy of 3D human pose estima-
tion is related to the 2D joint location relative accuracy to
the scale of maps.
To improve the model’s performance, we introduce dif-

ferent variances for regression of heatmaps and location-
maps respectively in the future work. Therefore, we set
a distinctive variance for the heatmap mask HGT

j in the
location-maps loss formulation (3). The model generates
more robust location-maps by setting a larger value to the
location-maps’ variance while keeping the accuracy in 2D
joint location estimation by heatmaps.
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