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Abstract

Commercial Unmanned aerial vehicle (UAV) industry, which is publicly known as drone, has seen a tremendous
increase in last few years, making these devices highly accessible to public. This phenomenon has immediately raised
security concerns due to fact that these devices can intentionally or unintentionally cause serious hazards. In order to
protect critical locations, the academia and industry have proposed several solutions in recent years. Computer vision
is extensively used to detect drones autonomously compared to other proposed solutions such as RADAR, acoustics
and RF signal analysis thanks to its robustness. Among these computer vision-based approaches, we see the
preference of deep learning algorithms thanks to their effectiveness. In this paper, we are presenting an autonomous
drone detection and tracking system which uses a static wide-angle camera and a lower-angle camera mounted on a
rotating turret. In order to use memory and time efficiently, we propose a combined multi-frame deep learning
detection technique, where the frame coming from the zoomed camera on the turret is overlaid on the wide-angle
static camera’s frame. With this approach, we are able to build an efficient pipeline where the initial detection of small
sized aerial intruders on the main image plane and their detection on the zoomed image plane is performed
simultaneously, minimizing the cost of resource exhaustive detection algorithm. In addition to this, we present the
integral system including tracking algorithms, deep learning classification architectures and the protocols.
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1 Introduction
The exponentially increasing public accessibility of drones
has been posing a great threat to the general security and
confidentiality. The drone sales have been increasing con-
sistently each year and they are expected to be muchmore
widespread in the future [1]. To highlight the importance
of the subject, several incidents with drones in recent
years can be given as examples : the alarming security
incident around the White House [2], mysterious appear-
ance of multiple drones for several days around nuclear
power plants in France [3], horrific near collision of an
airliner and a drone near LAX airport [4] and the drone
intrusion by an opposition party during a campaign of
German chancellor, which has alerted the security officials
[5]. Drones are also perfect tools for the illegal smugglers
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thanks to their low visibility. For instance, recently US offi-
cials have seized drug cartels while they were smuggling
drugs from Mexico [6] and Chinese police has revealed
the illegal trafficking of smart phones from Hong Kong
to mainland China [7]. Drones are attempted many times
to be used by inmates to smuggle things in and out of
the prison [8]. With their potential to carry high explosive
payloads, they are becoming a more significant concern
for the public and the officials. Lots of more reported
security incidents caused by drones in recent years can be
found.
Based on these examples, it can be said that detect-

ing and eliminating drones before lethal outcomes is at
paramount of interest. This task has been investigated
intensively by academia and the industry to commercial-
ize anti-drone systems. Certain systems in the market and
architectures proposed by researchers offer autonomous
detection, tracking and identification of the UAVs, which
is a highly important operational feature. The proposed
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systems use either RF signal detection (used for the com-
munication between device and the ground operator)
[9], acoustics [10], RADAR [11], LIDAR [12], or com-
mon passive optics (cameras) backed by computer vision
algorithms [13].
In the following section of the article, we present these

methods and discuss their pros and cons. The robustness
and effectiveness of optics over other approaches will be
highlighted. Among possible computer vision methods,
the high performance and the possible affordability of the
deep learning for this very specific task will be stated.
In this article, we present an autonomous drone detec-

tion, tracking and identification system based on optics
and deep learning, composed of a static wide-angle
RGB camera platform and a rotating turret, where a
lower-angle RGB camera is mounted. The static wide-
angle camera serves as a primary aerial object detection,
where drones can be detected at relatively long range
(up to ∼ 1 km), even as small as few dozens of pixels.
These detections are tracked on the image plane of the
wide camera and the ones which show specific motion
and visual signatures are inspected by the narrow-angle
RGB camera on the rotating turret. For detection of pos-
sible drones on the wide-angle camera’s image plane, a
lightweight version of YOLO deep learning algorithm is
used, which has recently become a popular choice thanks
to its robustness and speed [14]. This lightweight archi-
tecture is extensively trained for the detection of drones,
also as small as 6 × 6 pixels, for backgrounds similar
to the operational one. With diverse, well chosen, and
augmented datasets (∼ 10,000 images), we are able to
use the same architecture for detection on two differ-
ent image planes : wide -angle static RGB camera and
narrow-angle RGB camera on the turret. By using a single
lightweight YOLO detector on two frames with prop-
erly chosen different thresholds, we can economize GPU
memory significantly. We have chosen to separate the
detection and classification tasks to two different YOLO
architectures, which yields lesser consumption of compu-
tational resources. One of the genuine contribution of this
work is the introduction of a method, where the frames
of the narrow-angle cameras are overlaid on the wide-
angle camera’s frame, thus detection can be performed
simultaneously. This allows the uninterrupted tracking of
the aerial objects on the main image plane, while system
can identify the possible threats with the rotating turret’s
camera.
For tracking purpose, where the intruding airborne tar-

get is being tracked on wide-angle image plane, and veri-
fied by rotating zoom cameras; we have introduced a novel
algorithm called Target Candidate Track (TCT). This is
a collection of several policies, which mixes the motion
signatures on static image plane and visual signatures on
zoomed cameras; in order to prioritize the following of

multiple candidates and yield a precisely defined duration
for the assessment of possible threats. The main idea is to
make sure that a potential target is not being followed for
a long duration with rotating cameras, if it is a false alarm
such as bird or commercial airplane, as this case might
cause the missing of a real threat.
We present a fully autonomous optics-based UAV

detection architecture with two cameras, where one of
them is mounted on a rotating turret with low-angle lens
for detailed inspection of certain flying objects. In this
paper, after presenting the proposed methods for drone
detection in the literature, especially the ones using the
optical approach, we introduce the general scheme of the
system. The detection of small aerial intruders on the
main image plane (static wide-angle camera) and tracking
of their movements is explained in the following section.
Next, our policy to inspect and track suspicious aerial
objects by low-angle camera is presented.

2 Drone detection and tracking
The proposed methods in market and academic litera-
ture can be grouped by the nature of their equipment
: RADAR, LIDAR, acoustics, RF signal detection, and
optics. RADAR technology has been used for decades to
detect aerial vehicle; however, conventional ones are not
feasible to detect small commercial UAVs. Also, they are
flying at relatively much lower velocities, which decreases
the Doppler signature [15, 16]. Even though such exam-
ples as [11, 15, 17, 18] exist, especially in K, S, X-band
and with the exploitation of Doppler effect, generally they
fail to classify other aerial objects such as birds and the
background clutter due their increased sensitivity for this
particular case [16]. Hence, RADAR technology has not
been considered as an effective solution counter drones,
especially for autonomous configurations. On the other
end, LIDAR is a relatively new technology to be used for
drone surveillance task, thus only few proposals such as
[11, 19, 20] exist in the literature. Its feasibility and cost
effectiveness is still questionable due to voluminous data
output and sensitivity to the clouds etc.
Probably the most popular approach in the market for

drone detection is the RF signal analysis, which intends
to capture the communication between the drone and
the ground operator [16]. However, the main issue with
this approach is the fact that the drone may be operated
without ground control at all but with a pre-programmed
flight path.
Acoustics has been used also to detect drones by

employing microphone arrays [11, 21]. The aim is to clas-
sify specific sound of rotors of drones; however, they fail to
achieve high accuracy and operational range. Maximum
range of audio-assisted systems stay below 200–250 m.
Another disadvantage is the non-feasible nature of the
system in urban or noisy environments such as airports.
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2.1 Optical approach
Among other approaches for drone detection which are
presented previously, optics distinct itself. It can be said
that, optics has been regarded as the most convenient
way to tackle this challenge due to its robustness, accu-
racy, range, and interpretability [22]. Hence, we observe
a tendency to include cameras as the only or at least
on of the sensors of the proposed system in the mar-
ket. In addition to the aforementioned advantages, using
optics has a supplementary advantage with the recently
booming deep learning computer vision algorithms. With
culminating open source data (i.e., images, videos), devel-
oped algorithms and affordable GPU resources, using
deep learning for computer vision based on convolutional
neural networks (CNNs) has already become the de facto
approach for detection and recognition tasks [23, 24].
The breakthrough coming with the usage of deep learning
in computer vision has already started to revolutionalize
the industrial and scholar community. Therefore, one can
deduce after synthesizing the listed advantages that using
optics with deep learning is the most convenient approach
to the drone detection challenge.
We can already observe that most of the articles which

are published in recent few years, proposing to use com-
puter vision for autonomous drone surveillance task uses
deep learning. Certain examples of these papers are
[25–27], where all three of them use CNNs to detect and
classify drones. The usage of optics is also a widespread

application for commercial autonomous drone surveil-
lence systems, such as [28–30]. Therefore, we have also
chosen to follow an approach where RGB cameras are
used with deep learning algorithms. The instantaneous
detection and identificationmethods are widely addressed
in the literature in the context of person/pedestrian recog-
nition task such as [31, 32].

3 Main architecture of the system
As illustrated in Fig. 1, our system is composed of a static
wide-angle camera placed on a stationary platform with
adjusted angle and position according to demand, a rotat-
ing turret where a narrow-angle, zoomed RGB camera is
mounted on it and a main computational unit (a Linux PC
or embedded platform with NVIDIA GPU) is connected
to them via ethernet. Both RGB cameras are high per-
formance industrial cameras with same specs and model,
except the one on the rotating angle carries an external
professional zooming lens. The cameras are capable of
delivering 2000 × 1700 pixels of resolution with approxi-
mately 25 FPS. The wide-angle camera has a lens with 16
mm of focal length, which corresponds to approximately
110◦ of field of view (FoV). The camera on the rotating
turret has a 300 mm lens, thus having a diagonal FoV
around 8.2◦. One can see that the narrow-angle camera
has a zoom capability around more than × 35, as we wish
to detect drones as small as possible and at the same time
be able to identify them at large distance.

16 mm

52 mm

Static wide-angle 
camera

Low-angle 
camera

Main 
Computational 
Unit

Rotating 
Turret

Static Camera Image Plane

Low Angle Camera Image Plane

Fig. 1 The general setting of our drone detection system. Our drone detection system is composed of mainly three interconnected components; a
static wide-angle camera, a rotating turret equipped with a low-angle camera and a Linux-based main control computer
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Based on a modified lightweight YOLOv3 architecture,
we detect the small intruders. At this first stage, false
alarms up to a degree is acceptable, where they are tracked
and based on their movements and visual signatures they
may be inspected by rotating the turret toward it and
analyzed with the narrow-angle camera.
Our system uses python as the main programming lan-

guage due to its versatility and high performance. The
deep learning algorithms for detection and classification
are based on darknet YOLO architecture, which is writ-
ten in C language but can be wrapped in python [14].
The deep learning algorithms are executed in the GPU of
the main computational unit, which is a 2 Gb memory
NVIDIA Geforce K620.
Initially, system tries to detect small UAVswhich intrude

and observe the horizon with the wide-angle static cam-
era. In order to be coherent with the square input shape of
the YOLO architecture, firstly we reshape the raw images
coming from the wide-angle camera to 1600 × 1600 pix-
els. We have chosen to use YOLO for the detection and
classification due to its high performance and processing
speed, which is also preferred by many other researchers
[26]. Different than other detection convolutional neu-
ral networks, YOLO uses a regression-based approach to
locate objects on an image, whichmakes the processmuch
more rapid. In the last version of YOLO (YOLOv3), a new
concept called upsampling is introduced which boosts the
small object detection performance drastically [33]. In this
version, in the later layers of the architecture where the
image plane size is diminished, an upsampling layer is
introduced. The feature matrix is upsampled with ×2 and
it is connected to a previous layer (a layer which has the
same feature dimension with the new upsampled one.) via
a route layer. As it is clear, this is an attempt to detect small
patterns by rescaling the feature vector in positional axes.
The default version of YOLOv3 contains a total of 102

layers, where there is three detection layers, each for a
scale. In other words, after the first detection layer the
feature matrix is upscaled two times. The default ver-
sion has two different options for input size 418 × 418
and 627 × 627. The detection layer of YOLO can be seen
as a regression operation, which probabilistically locates
the objects. Details of this default architecture can be
found in [33].
We have found the default architecture of YOLOv3 is

quite resource exhausting both in time and memory with
our limited GPU. Especially, it does not allow to attain
necessary FPS rates for the simultaneous detection and
tracking of our system. Therefore, we have decided to use
a lightweight version of the system. After an extensive
experimentational campaign, we have found that narrow-
ing the architecture rather than shortening it is a more
reliable approach. In other words, minimizing the number
of filters while keeping the number of layers same is found

to be more effective for the very specific case of drone
detection problem. As mentioned previously, detection
and classification procedures are separated for effective-
ness in our system [34]. Therefore, detection algorithm is
trained to detect only drones; however, any miss detec-
tion is considered acceptable up to a degree, as the system
tracks and inspects in detail with zoomed camera if nec-
essary.
The aim of the design of our lightweight YOLO detector

is to attain the best miss rate and false alarm performance
for small intruding drones, while having an acceptable FPS
and GPUmemory usage. It was concluded that if the filter
count can be minimized, the input shape can be increased
to 832 × 832. The memory resource and computational
time loss coming from increased frame size is decided
to be more preferable, rather than having higher num-
ber of filters. Therefore, at the end, the best architecture
for the lightweight YOLO detector is concluded to be as
illustrated in Fig 2. As it can be seen, except for the last
scale layers (the layers after the second detection layer),
which are more responsible for detecting the smallest size
objects, number of filters of each layer is set to 16. The
number of filters of last scale layer are more than 16, in an
attempt to boost the small object detection performance.
Also note that, the number of convolutional filters before
each detection layer is set to 18, which is a constrained as
we have only a single class to detect due to the mecha-
nism of the YOLO architecture [14]. Any number of filters
lower than 16 found to be insufficient, while more has not
been contributing to performance drastically when the
resource constraints are considered. The performance of
the detection architecture is presented in the Section 5 of
the article.

3.1 Tracking onmain image plane
After the lightweight YOLO detector locates a intruder,
it is immediately assigned a new ID number and be
tracked. The detection and tracking is performed in a
frame by frame manner. Thus, it is an asynchronous pro-
cess, as computation times may vary frame to frame;
however, we have observed this effect is minimal. In
other words, every time a frame is processed by detecting
the objects on main plane, the tracking and classifica-
tion operations follow it. When the operation for that
frame is finished, the next frame is processed. Note that,
a python thread is responsible of grabbing raw frames
from the cameras with 25 FPS rates, thus the latest avail-
able frame is processed when demanded. As we would
like to be able to detect objects as small as few pix-
els, motion-based tracking is adopted rather than visual
signature-based tracking [35]. For this purpose, we have
decided to use a Kalman tracking algorithm based on an
already existing python library, optimized for algebraic
operations [36].
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Fig. 2 Proposed lightweight YOLOv3 detector. Different than the default architecture, we prefer to use 812 × 812 × 3 input size to better detect
the small drones. The circles with R denotes the route layer and the U denotes the upsampling layer. Note that, the previous layer filters, where the
upsampled feature matrix is routed is underlined. Also, note that the layers where the positional dimensions of the feature matrix is divided in to
two by proper strided max pooling are shown

The aim of tracking can be divided in to two as first
being able to estimate the position of the object when the
detection fails and being able to associate a new detection
to an existing track in the previous frame [37]. In order to
associate detections in the new frame to the existing tracks
or assigning as new tracks, we use the well known Hun-
garian algorithm where the cost is the distance between
the centroid of the bounding boxes [38].

3.2 Notion of target candidate track (TCT)
In this section, we introduce a concept which is called
target candidate track (TCT), which refers to the tracks
on the main image plane, where algorithm decides to
inspect by the zoomed lens. Therefore, the rotating tur-
ret is directed toward the instantaneous location of the
track. At an arbitrary time, the system only has a single
TCT, where no new TCT is inspected until the current
one is unassigned. So TCT is one of the tracks on the main
image plane, which are being tracked by Kalman filtering,
where it is also controlled visually with zoomed camera by
rotating the turret.

3.2.1 Assignment of TCT from tracks on themain image
plane

Each tracked object is followed at least for Tpre−track
min

frames, where its instantaneous positions are recorded
(centroid of the bounding box). These displacement infor-
mation are used for the decision of whether the tracked
object should be checked by the zoomed camera on the
turret. For this purpose, we propose to analyze the move-
ments of the tracks in last Tmov frames. As illustrated
in Fig. 3, the Euclidean distances between last Tmov cen-
troids and the last position is summed for each object,
where we refer as the cumulative Euclidean displacement,

�D. We use this metric as the motion signature. The
main reason behind this decision is to favor the linear
movements, which may potentially represent an outside
intruder toward a direction. In Fig. 3, one can see that the
plane in red bounding box,has a much larger movement
score compared to others due to its linear movement. The
calculated total displacement of each track on a frame in
last �D is summed, and each track is assigned a motion
score after dividing their �D with this sum. Thus, by nor-
malizing the values, we can calculate a motion signature
score for each track as a scalar between 0 and 1 : cmov.
We also incorporate the visual information in the pro-

cess of this decision; however, only if the size of the
tracked object on the main image plane is larger than a
value, Apre−track

min . This value is in pixels, where the min-
imum value of width or height of the bounding box is
considered. The metric for the visual signature is the con-
fidence score between 0 and 1 coming from the YOLO
detection. Therefore, it is not calculated with a separate
process. On the contrary, even the size is larger than
Apre−track
max pixels, it is considered as Apre−track

max . Also, if the
size of the track is larger than ATCT

max pixels, it can be
counted as a TCT, but the zoomed camera is not rotated
toward it due to the fact that, it would not even fit in the
focal plane of the very low-angle camera. Hence, its visual
appearance as a TCT object is checked based on the main
image frame.
We use only motion signatures when the tracked

object’s size is very small and increment the utilization of
visual signatures proportional to size. At the end, at each
frame an overall score (coverall) is calculated for each track
from its visual andmotion signature considering its size as

coverall = βcvis + (1 − β)cmov (1)
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Fig. 3 Detection and TCT tracking algorithm. The movement score that we use for evaluating tracks to decide or prioritize to assign as TCT is
calculated as the total euclidean displacement in last Tmov frames. In other words it is the total length of green lines in this figure, where Tmov = 6
for illustration purposes. The very last position and the position Tmov frames before are marked with empty squares, while centroids on other frames
are marked with filled squares

where β is a scalar between 0 and 1 determining the
importance of visual and motion signatures proportional
to the instantaneous size of the tracked object:

β = A − Apre−track
min

Apre−track
max − Apre−track

min
(2)

where A is the instantaneous size.
coverall determines if a track should be inspected by

rotating the low-angle camera (i.e., assigned as TCT) and
if there are multiple candidate tracks which one we should
first assign as a TCT. This overall score is a scalar between
0 and 1. The tracks having coverall smaller than cmin

TCT are
not considered as candidates for being TCT. Hence, if
there is no TCT on a given frame, and there are multiple
tracks on the main image plane which fulfill the condi-
tion to be a TCT, the one with the maximum coverall is
assigned as a TCT, if and only if it was not assigned as
TCT before (It means, this track was already inspected
with zoomed camera and decided to be a non-threatening
object) (Table 1).

3.2.2 Treatment of an assigned TCT
As mentioned in the previous section, there can only be
one TCT object at a given instance. When a specific track
with a specific ID is assigned as TCT, the turret is imme-
diately rotated toward the instantaneous position of it.
Then the procedure for the treatment of a TCT begins,
where frames coming from zoomed camera is evaluated.
A TCT is inspected for at least TTCT

min frames, in order to
allow a minimum fair time to decide whether it is a drone
or not. The tracking process on the main image plane of

the static wide-angle camera, which is explained in previ-
ous section continues normally, even during the presence
of a TCT.
A TCT is evaluated in periodic windows temporally,

where each time unit is TTCT
window frames long. The frames

coming from the zoomed camera is processed simultane-
ously with the main image plane for detection with the

Table 1 Descriptions and chosen values of various parameters of
the system

Symbol Description Value

Tpre−track
min Minimum number of frames for a

track to be considered as a TCT
18 frames

Tmov Number of last centroids and
frames to calculate the movement
score

16 frames

Apre−track
min Minimum width of height of a track

bounding box to be considered as
a TCT

32 pixels

Apre−track
max Maximum width of height of a

track bounding box of TCT, where
main image planes is used for
visual signatures.

256 pixels

TTCTwindow The length of a periodic window
for TCT

8 frames

TTCTmin Minimum number of windows for
TCT to decide to whether unassign
or continue

12 windows

α Moving average filter parameter 0.85

KTCTmin Minimum overall score of TCT to
decide to continue

0.85
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same YOLO architecture, thanks to the novel algorithm
we present in the next section. Each frame, the candi-
date objects (if exists any) are detected and located on the
zoomed camera frame. After detection are located, they
are cropped from the frame and classified by the separate
YOLO classifier algorithm. Note that as explained previ-
ously, if the size of the TCT is larger than a threshold, its
appearance on the main image plane is used.
As mentioned previously, the detection and classifica-

tion is performed separately with two different YOLO
architectures, even the nature of YOLO permits for com-
bined detection/classification. The reason behind this is
the fact that increasing input size exhausts quadrically
more GPU resources. Hence, we have shown that follow-
ing a divide and conquer strategy is better in this context,
where the objects are detected with a lightweight detector
and classified with a separate, more sophisticated archi-
tecture, whose input size is 64 × 64. We have found that
this input size attains a sufficient compromise between
memory consumption and accuracy. The layers of the
classifier architecture can be seen in Fig. 4. Based on our
field observations, we have designed and trained to sys-
tem to analyze 4 different classes : drones, birds, airplanes,
and background clutter. We have observed that consider-
ing helicopters confuse the algorithm due to their visual
similarity with certain types of drones. It was concluded
that, it is better to exclude helicopters for our specific field
case, where they appear much more less frequent com-
pared to commercial airplanes and birds. Also note that,
jet fighters were not included in dataset due to the same
reason. One can find high number of open-source videos
and images, whereas the most time-consuming part is

the labeling of the dataset. As a future enhancement, we
would like to add semi-autonomous approaches such as in
[39], where a deep learning-basedmodel is trained initially
with a smaller, human-labeled dataset and can automat-
ically generate highly accurate labelings for voluminous
datasets.
For each frame, the detection and classification is per-

formed for the current TCT, and the confidence scores
of classification of each detection is recorded. If there is
no detection, the classification score is set to 0 for drone
recognition. Note that, there may be multiple overlapping
detections for the same objects. For each temporal win-
dow

(
TTCT
window frames

)
, the maximum drone classification

score, kTCTt is evaluated among all detections in that win-
dow. The motivation behind this scheme is the fact that
due to rapid motion of the zoomed camera and the object,
the object may not be present in the image plane. Also,
degrading effects due to blurry frames caused by motion
is also compensated. Another advantage of this scheme
is the chance of evaluating different poses of the same
object, where the maximum score among them shall give
a more accurate result.
The maximum scores of each time windows are aver-

aged by a regular moving average filter as follows :

KTCT
t = αKTCT

t−1 + (1 − α)kTCTt (3)

where α is a scalar determining the effect of the history.
If the age of a TCT is larger than TTCT

min frames and its
KTCT
t is smaller than KTCT

min ; the object is considered not
to be a drone and it is unassigned as a TCT. Note that
this object shall continue to be tracked on the main image
plane; however, it would not be assigned as TCT another
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128 3x3
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128 3x3/2
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drone
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airplane
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Fig. 4 Proposed lightweight YOLOv3 classifier. The YOLO architecture used for classification purpose with 64× 64 input size. Note that, classification
of feature vectors are performed by 2 consecutive fully connected layer with 512 neurons with 0.5 dropout between them
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time as it has been checked before. Then, if there are other
candidate tracks, which has the highest coverall is assigned
as TCT, immediately.

4 Detection onmultiple overlaid images with a
single architecture

One of the most pioneering aspect of this article is the
presentation of a new kind of scheme to locate objects
on multiple frames with a single deep learning detector.
When there is no TCT, as mentioned previously, only a
single frame coming from the wide-angle static camera
is evaluated. At this configuration, the YOLO detector
tries to locate objects only on this image. However, when
there is a TCT, we have to process the images coming
from the zoomed camera also. We can do this by using
two separate detectors for two frames at the same time
or using the same detector architecture and process the
frames consecutively. However, at the first case, we con-
sume the GPUmemory and we lose time in the latter case,
by the order of 100%. In this system, the main temporal
bottleneck is execution time of YOLO detector (0.07 s),
which mostly determines the resulting FPS. Therefore,
this improvement is primordial for a reliable operation.
Our GPU memory was not sufficient for the instanta-

neous operation of two copies of the YOLO detector. And
we have observed that halving FPS significantly reduces
the performance of the surveillance. Therefore, we sug-
gest to locate objects on a single-montaged frame, where
the image coming from the low-angle camera is over-
laid on the main image plane. This way, the detector
detects drones on this single image, and based on the
positions, we can locate the object in the image planes of
both cameras. If detections are on the borders between

the montaged frames, the detection is associated to the
camera where most of its area resides.
Note that, this overlaid image is only used to locate

the bounding boxes of the objects. In other words, based
on the location of the detection bounding box on the
small image in the corner (low-angle camera frame), with
proper scaling of the coordinates; we can crop the image
from the raw frame of the low-angle camera (thus, resolu-
tion loss does not occur due to downsizing for overlaying).
Next, this cropped images can be classified by the YOLO
classifier architecture.
Based on our experimentations, it was concluded that

the overlaid image coming from low-angle camera shall be
1/4 of the main image plane. Note that, even the raw main
image plane size is 1600 × 1600 pixels, it is automatically
downsized to 832×832 pixels, due to YOLO architecture.
However, when regions are being cropped, raw images are
used with proper transformation between coordinates of
different scales. So, even small objects’ bounding boxes
can be acquired with high resolution. Also note that, the
size of the small image to be overlaid can be determined
on the fly, according to changing demands (Fig. 5).

5 Experimental results
We have tested our system in field and with test videos
in order to stress the performance under different condi-
tions. First of all, let us examine the detection accuracy
of the proposed lightweight YOLO architecture and com-
pare to the several conventional object detectionmethods.
As mentioned previously, we would like to be able to
locate the intruding small drones at large distance; there-
fore, the performance under these conditions are evalu-
ated in depth. As a conventional measure, any video used

Static Camera Image Plane
(1600x1600 pixels)

Zoomed Camera Image 
Plane
(400x400 pixels)

Simultaneous detections 
with the same detector on 
a single frame

Fig. 5 Proposedmontagedmultiple image detection. The frame coming from the zoomed camera is rescaled and overlaid on the main image plane.
The position of this overlay is determined according to presence of tracks. We try to enforce to overlay the new image, as far as possible from existing
tracks, in order to allow the system to continue tracking. A similar attempt has not been proposed in the literature to the best of our knowledge
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for experimentation has not been used for training or val-
idation process. We have also tried to test the system with
as many different types of drones, birds, and commercial
airplanes.
To highlight the performance of the lightweight deep

learning detector, we compare it to two conventional
object detection approaches. First one is the cascaded
Haar feature classifier, which works in a sliding window
manner [40]. We have designed a 20 layer extended set
Haar classifier with Adaboost algorithm. This cascaded
algorithm is also trained with the same dataset for the
YOLO detector. As a second counterpart, we have used
a Gaussian mixture model (GMM) background subtrac-
tion algorithm, as the wide-angle camera is static [41].
The background subtractor is pretrained for 400 frames.
The results for overall accuracy and precision are based
on 800 frames from 20 videos (40 from each video, non-
consecutive frames).
For instance, in Fig. 6, there exists two small birds fly-

ing from left hand side toward right hand side (two small
green bounding boxes on the upper half of the image)
and a small drone approaching from horizon (small green
bounding box below). The green, red, and blue bound-
ing boxes correspond to detections by our lightweight
YOLO detector, cascaded Haar detector and background
subtraction algorithm, respectively.

Fig. 6 Comparison of detectors in a marine environment at far
distance. Detections produced by lightweight YOLO architecture
(green), cascaded Haar classifier (red) and Gaussian mixture model
background subtractor (blue). There exists two birds, flying from left
hand side toward right hand side on the upper half of the image and
a drone approaching from horizon on the bottom half of the image,
all three enclosed by green boxes. The footage is provided by [43]

One can see that, lightweight YOLO architecture has
detected 3 aerial objects one drone and two birds, while
producing no other false alarms. Considering the com-
plexity of background, this is a remarkable performance.
Even with high number of layers, cascaded detector has
produced high number of false alarms. The background
subtraction method also produces false alarms caused by
the motion of sea waves. Also note that, the enclosing
of bounding boxes around three objects by lightweight
YOLO detector is much better compared to others. This is
thanks to the semantic context which can be retrieved by
deep learning and regression-based approach, even with
the minimal number of filters.
Due to limited space, more visual comparison of detec-

tors with images is not given; however, the overall perfor-
mance for similar settings can be examined from Table 2.
As it can be seen from the results, while YOLO produces
no false alarms, their counterparts show a remarkably low
performance. Also, we can see that YOLO has a slightly
less true positive rate. Considering the fact that even
they system misses detections on certain frames, it may
be recovered within the tracking-based framework. Even
with minimal number of filters, the system can attain
very promising accuracy for a primary detection mech-
anism thanks to the semantic nature of deep learning-
based YOLO algorithm. These results are important in
the sense of compromising width of the architecture, we
can still manage to achieve substantial results; if detec-
tion and fine-grade classification is separated between two
different architectures (Figs. 7, 8, and 9).
Especially in the context of small airborne target detec-

tion, where most of the time the background of the target
and its periphery shall be uniform such as sky. This situa-
tion contains a high-degree semantic context, where deep
learning algorithms can grasp. In the small target detec-
tion task, we have observed that if upscaling feature of
new YOLOv3 is used, width (i.e., number of filters) is less
important compared to the depth, if and only if detec-
tion and detailed object classification tasks are separated.
In addition, to further increase the small object detection
accuracy, one can increase the number of filters in the
last scale. Even though classification is performed with a
different architecture, another advantage of this detector

Table 2 Overall approximate true positive and false alarm rates of
three different detectors, for different settings and environments

True positive False alarm

Lightweight YOLO 0.91 0

Cascaded Haar 0.95 0.42

GMM back. sub. 0.98 0.31

The results are based on 800 frames from 20 videos (40 from each video,
non-consecutive frames.)
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Fig. 7 Comparison of detectors in a marine environment at low
distance. Performance of detectors for low distance case in same
marine environment. For instance, even very small camera vibrations
or sudden illumination perturbations can cause the drastically . The
footage is provided by [43]

scheme is the resulting confidence score, which can be
used as a metric in the system.
The operation of multiple overlaid images detection

with a single detector is shown in Fig. 10. As it can be
seen, very small drone present in the main image plane is
detected, even in the presence of low visibility and com-
plex background. At the same time, we also detect the
drone on the secondary image, where we do not have to
run the algorithm again. We have explained in previous
sections that this scheme is only used for bounding box
localization where we crop the region of interest from the
raw image after rescaling coordinates.
Tracking of the drones with the scheme explained pre-

viously is shown in Figs. 11, 12, 13, 14, and 15, where

Fig. 8 Comparison of detectors in a nocturnal setting. Performance of
detectors in a nocturnal marine environment, with very low visibility.
The footage is provided by [43]

Fig. 9 Performance demonstration of our YOLOv3 detector on a
open field at large distance

the path they have followed in previous frames are traced.
The detector and Kalman tracking works with high accu-
racy, even when the size of drone is smaller than few
dozens of pixels. Kalman tracking also makes sure that
the trace of the object is never lost by periodic predic-
tion. Note that, in these examplary three frames, there

Fig. 10 Detecting on multiple overlaid images. Simultaneous
detection on a single overlaid frame composed of images coming
from wide-angle camera and lowangle camera, with a single
lightweight YOLO architecture. Also note that, even for very small
sizes and difficult visibility conditions, the system can detect the
drone on the horizon, while producing no false alarm [43]
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Fig. 11 Performance of tracking. Lightweight YOLOv3 detector and
TCT-based tracking perform well even with complex background

is no false alarms being tracked by the system despite
highly complex background, low visual signature, and dif-
ferentmodels. Preference to favor linear directionwith the
methods explained previously can be considered consis-
tent for these examples also.

Fig. 12 Performance for small size in open sky. Lightweight YOLOv3
detector and TCT-based tracking can also perform well for drones at
high range with almost non-existent false alarms

Fig. 13 Performance of tracking in a marine environment with
complex background patterns. Lightweight YOLOv3 detector and
TCT-based tracking perform with high performance in a marine
background, where there is no false alarms

6 Conclusion
We propose an end to end, complete autonomous drone
surveillance system based on RGB cameras and com-
puter vision. Considering the needs of this two camera
system, a detailed framework has been built, consisting
of algorithms and policies for detection, tracking, and
recognition. The proposed scheme can be used partially

Fig. 14 Performance for small size in an urban setting. Our proposed
system can still provide good results, with almost zero false alarm
rate, even at large distance in an urban setting, where complex
shapes are present
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Fig. 15 Detection and tracking for multiple targets. System continues
to operate with accuracy even with presence of multiple drones

or fully for other video surveillance tasks rather than
counter drone activity, after proper modifications. Our
system, in collaboration of a static wide-angle camera and
a rotating low-angle camera, has been proven to pro-
vide plausible results based on simulations and field tests.
One advantage of the system is the limited GPU memory
requirement which makes it affordable.
After in depth experimentation, it has been concluded

that separating the resource exhausting detector architec-
ture from the lower input size classifier can be a con-
ceivable strategy. A lightweight version of the YOLOv3
architecture is used for detection task with number of
filters as small as possible. We have observed that even
with this significantly thinner architecture, small drones
can be detected with drastically low false alarm rate. How-
ever, this strategy would not always detect only intended
objects; therefore, this part of the system should be treated
as a primary filter for candidate targets.
In addition to this, we have developed and presented an

autonomous intelligent tracking policy, where suspicious
airborne targets are examined in detail with a lower-angle
camera. Probably, the most innovative contribution of this
paper is the proposal of a basic method, where frames
coming from multiple cameras are overlaid with a proper
configuration and object detection algorithm with deep
learning is executed once. To the best of our knowledge,
this is the first similar attempt in the literature.
Our multi-camera scheme can be accompanied by

more complex re-identification (ReID) algorithms in
future, which offers significant performance augmenta-
tion. Literature on ReID primarily have been focused on

person/pedestrian tracking such as [42]. In future devel-
opments, we would like to apply a similar approach to
track drones (and other airborne objects), starting from
their initial detection on primary, static wide-angle cam-
era, until the end of the recognition process with sec-
ondary zoomed camera.
To draw a conclusion, we can firmly state that using

a very lightweight (in terms of filter count) deep YOLO
architecture (properly and adequately trained with a volu-
minous dataset) shall give a high performance in terms
of precision and accuracy compared to conventional
object detection methods, while attaining a similar FPS
and memory consumption. As mentioned previously, this
architecture would not be a front-end recognition sys-
tem, but serve as a primary candidate target location
finder.
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