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Abstract

The combination of a pattern projector and a camera is widely used for 3D measurement. To recover shape from a
captured image, various kinds of depth cues are extracted from projected patterns in the image, such as disparities
from active stereo or blurriness for depth from defocus. Recently, several techniques have been proposed to improve
3D quality using multiple depth cues by installing coded apertures in projectors or by increasing the number of
projectors. However, superposition of projected patterns forms a complicated light field in 3D space, which makes the
process of analyzing captured images challenging. In this paper, we propose a learning-based technique to extract
depth information from such a light field, which includes multiple depth cues. In the learning phase, prior to the 3D
measurement of unknown scenes, projected patterns as they appear at various depths are prepared from not only
actual images but also ones generated virtually using computer graphics and geometric calibration results. Then, we
use principal component analysis (PCA) to extract features of small patches. In the 3D measurement (reconstruction)
phase, the same features of patches are extracted from a captured image of a target scene and compared with the
learned data. By using the dimensional reduction by feature extraction, an efficient search algorithm, such as an
approximated nearest neighbor (ANN), can be used for the matching process. Another important advantage of our
learning-based approach is that we can use most known projection patterns without changing the algorithm.

Keywords: Active stereo, Structured light, Depth from defocus, Computational photography, Light filed projection,
Coded aperture, Learning-based reconstruction, Principal component analysis, Approximate nearest neighbor, Belief
propagation

1 Introduction
Video projectors are now in a widespread use for vari-
ous purposes beyond just image presentation on a white
screen. Because of their recent technological progress and
cost efficiency, they are also useful for such applications as
projection mapping on complicated shapes and 3D recon-
struction of objects. Among these, 3D scanning systems
using a projector and a camera have been researched for a
long time.
Previously, because such a system usually relied on just

a single depth cue, 3D shapes were reconstructed by
standard stereo imaging, depth from defocus (DfD), or
photometric stereo techniques. By using such traditional
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methods, it is difficult to incorporate multiple depth cues
into a single captured image, which would result in more
stable and more accurate depth measurement. Recently,
several techniques have been proposed to improve the 3D
quality by installing coded apertures into the projectors
or by increasing the number of projectors, which would
provide multiple depth cues for reconstruction. In the
first case, the coded aperture installed in the projector
increases depth-dependent information and avoids defo-
cus blur. However, since patterns projected on a target
surface can be represented by convolution of the aperture
and the projection pattern, it is difficult to analyze such
convoluted information. In the second case, the number
of depth cues is increased by simply using more projec-
tors, a technique that is similar to the multi-view stereo
technique. However, contrary to a multi-camera system,
multiple patterns projected onto the same object’s surface
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interfere with each other, making it difficult to separate
features. A practical solution is to use a different wave-
length (color) for each projector to be able to decompose
them as from independent projectors. However, with this
method, only three wavelengths (red-green-blue, or RGB)
can be used with common (off-the-shelf ) projectors, and
crosstalk phenomena between different color channels
remains an open problem.
Both the abovementioned techniques can be under-

stood as a construction of a unique light field in 3D and
extraction of depth cues from a part of it. Because the
structure of a light filed composed by multiple projectors
is complicated, analysis of such a synthetic light filed in
practice is quite difficult. In this paper, instead of sepa-
rating a light field from different depth cues, we propose
a learning-based technique to extract depth information
directly from the light field.
Figure 1 shows the overview of the proposed shape

reconstruction technique. The key to our technique is
based on the fact that such a projector-sourced light field
is locally smooth and consists of similar blocks in 3D
space; the multiple projectors project some regular pat-
terns that coalesce to form a continuous light field in
the space [1, 2]. Our solution is to sample a large num-
ber of small image areas or patches from the light field
and apply a machine learning technique to reduce the
size of the dataset as well as shorten the depth calcula-
tion time. The method can be divided into two phases:
a learning phase and a shape reconstruction phase. In
the learning phase, because there is no medium to reflect
the light rays in the air, the patterns are invisible and

unobservable, and therefore, we put a planar board in
the scene to capture the patterns. Further, we conduct a
principal component analysis (PCA) to eliminate redun-
dant dimension and thus compact the data. In the shape
reconstruction phase, to reduce both the dataset size and
a calculation time, we use an approximated nearest neigh-
bor (ANN) search algorithm combined with a belief prop-
agation (BP) algorithm, which efficiently removes noise
thereby increasing robustness and quality in the final
output.
The main contributions of this paper are as follows.

1 Multiple depth cues (e.g., disparity and defocus) can
be superposed into a single captured image to make
depth measurements stable and accurate. Also,
multiple projectors can be used simultaneously. Note
that the number of the projectors need not be limited
to the number of color channels because our
technique is not based on pattern separation
approach, which is common in previous techniques.

2 Capturing all possible sample images is not always
necessary; virtually generated images can be used for
supervisory signals in the learning phase.

3 Our proposed system can incorporate various feature
extraction and learning algorithms. We venture to
propose a simple method, which uses PCA and ANN
as it does not require hyperparameters except for the
number of dimensions, whereas deep learning
techniques [3] require many fine-tuned
hyperparameters and a long processing time for
learning.
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Fig. 1 Overview of the proposed shape reconstruction technique
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2 Related works
In an active stereo system, a video projector is often used
as a light source to measure a wide area in a short period
of time, and the history of those techniques was sum-
marized in [4]. Such systems usually rely on just a single
depth cue, and therefore, 3D shapes are reconstructed by
standard stereo imaging, by DfD or by photometric stereo
techniques. Recently, several techniques that use multiple
depth cues for active stereo systems have been proposed.
A method devised by Masuyama et al. relies on both
stereo and DfD cues by projecting multiple patterns along
the same optical axis but using different focal lengths
[5]. However, sharing the same optical axis complicates
the system, and overlapping multiple patterns severely
lowers the contrast. Zhang et al. proposed a method

for projecting different patterns and successfully recon-
structed a high-density depth map by analyzing the cap-
tured defocused image set [6]. Achar proposed a method
projecting a pattern with different foci to enlarge the pos-
sible depth range [7]. However, because those approaches
require multiple images for reconstruction, they are com-
plicated and have only a limit range of application. Our
technique is based on a single image and free from these
problems.
Another approach to increase the depth cues using a

video projector is to attach a coded aperture mask to
the projector. Girod et al. used an asymmetric aperture
to distinguish the forward and backward blur for depth
from defocus (DfD) [8]. Moreno-Noguer et al. installed a
small circular aperture to use the DfD technique [9], and
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(a)  Learning with Real Projection and Capturing

(b) One-shot Depth Measurement
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Fig. 2 System configuration and process flow of system 1. a Learning with real capturing: captured by changing the depth of a planar board with
known position on which the specially designed pattern is projected. b Depth measurement
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Kawasaki et al. put a coded aperture on a video projec-
tor to improve accuracy and density while applying the
DfD method [10, 11]. However, for all those techniques,
depth range is limited and reconstruction is unstable and
inaccurate because the analysis of defocus blur is still an
unsolved problem and difficult to apply.
Because patterns formed by video projectors construct

a synthetic light field, the above techniques can be consid-
ered extractions of depth cues from a sampled light field
projected onto an object surface. However, as mentioned
earlier, because of its complicated nature, only limited
research has been done to analyze of a synthetic light field

created by projectors. Kawasaki et al. proposed a tech-
nique to capture the entire light field by a special sampling
machine [12], but the dataset size proved to be very large
and calculation time high. In contrast, we propose two
approaches to create a blur-free light field and to recover
3D information using compact data representation and
low computational time.
Sagawa et al. proposed a depth measurement method

based on a convolutional neural network (CNN) [3].
Although purposes of both Sagawa’s and our methods
are the same, such as dimension reduction of patch fea-
ture, the approaches of our and Sagawa’s methods are
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Fig. 3 System configuration and process flow of system 2. a Learning with virtual capturing: geometric relationships between each projector and
the reference object is calibrated individually. b Depth measurement
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Fig. 4 Pattern projection with coded aperture for different target depths

totally different, i.e., Sagawa et al. tried to explicitly
separate overlapped patches into each projector’s pat-
tern and trained a CNN to reduce the effects of color
crosstalks caused by using multiple projectors, whereas
our method learns to use the overlapping light fields
as a whole. Also, the CNN requires many hyperparam-
eters and a long processing time for training, whereas
our method using PCA does not require hyperparameters
(except for specifying the number of dimensions of the

reduced data space), nor a long computational time for
learning.
Fanero et al. [13] proposed to use a camera with infrared

illumination for close-range human 3D capturing. Their
method assume close-range measurement and limited
kinds of materials (e.g., limiting to human hands or faces),
where illuminated intensity can be a range cue, whereas
our method can deal with much wider object classes,
object shapes, and working ranges.
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sample images
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Fig. 5 Algorithm overview of learning based 3D reconstruction
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3 Overview
3.1 System configuration
The learning-based 3D shape reconstruction method pro-
posed in this paper is characterized by integrating multi-
ple types of depth cues. Our technique can be applied to
various system configurations of active 3D measurement,
particularly where conventional analytical reconstruction
methods are difficult to apply. Examples of our system
configuration are shown in Figs. 2 and 3.
Figure 2 shows a configuration using a single or multi-

ple video projectors incorporating a coded aperture [12].
In this system, both the aperture mask and projected pat-
tern involve mutually parallel lines. Figure 4 shows an
example of how a projector with a coded aperture con-
structs the light field in the space. As the distance from
the projector to the target surface changes, the projected
patterns change. Because the aperture mask has many
small slits, the projector preserves both high-frequency
patterns and the total amount of light energy. By pro-
jecting a pattern that varies according to the depth, it
is possible to perform depth measurements based on
depth cues from defocus blur. In theory, if there are
multiple projectors, shape can be recovered with depth
cues by disparity. However, because in practice, those
depth cues are intermixed, common techniques cannot
be applied.
Figure 3 shows an example system configuration that

consists of one charged coupled device (CCD) camera and
multiple common (off-the-shelf ) projectors. In general,
it has been necessary to project patterns with different
wavelengths in order to separate depth cues after mea-
surement. However, because our proposed method has
the advantage that single color patterns from multiple
projectors can be differentiated by a machine learning
approach, simpler 3D shape reconstruction systems are
possible without needing different wavelengths.

Fig. 6 Extracting image features of sample images

In addition to the example system configuration, Figs. 2
and 3 show the processes involved in our proposed
method, which has two main stages: the image database
learning phase and the depth measurement phase. In
the learning phase, the database is constructed from the
actual or virtually captured images using data compres-
sion. Then, in the measurement phase, a 3D shape of the
target scene is reconstructed from a captured image using
the database.

3.2 Algorithm overview
Figure 5 outlines the algorithm of our proposed method.
When constructing an image database in the learning
phase, a large number of small image patches are sam-
pled from the light field and stored in the database (see
Section 4.1). However, this means that the size of the
image dataset as sampled from the light field becomes
extremely large. In particular, because complicated pro-
jection patterns with different types of disparities and
defocus effects are projected from multiple projectors,
spatial frequency becomes high. For this reason, we pro-
pose feature extraction using PCA to reduce the size of
the image dataset and thereby shorten the processing time
for distance estimation [14, 15]. The same process is per-
formed not only when constructing the database but also
when matching the input image with those already in the
database.
Next, distance is estimated by matching each input

image patch with image patches already in the database in
the depth shape reconstruction phase (Section 4.3). Origi-
nally, this matching process required full search, and thus,
the calculation cost was high. In the proposed method,

Fig. 7 Samples of eigenvectors visualized in image format
(eigenimages) for grid patterns. The top row images are eigenimages
for a grid pattern to use one projector, the middle row images are for
grid patterns by two projectors, and the bottom row images are for
grid patterns by three projectors. From left columns to right, the 2nd,
3rd, 11th, and 12th eigenimages in the order of eigenvalues
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Table 1 The depth cues for the two proposed methods and previous method

Multiple projector Depth cue Learning data Reconstruction

Disparity Defocus ANN PCA

Previous method [12] x � � Real � x

System 1: two projectors equipping a coded aperture � � � Real � �
System 2: three general video projectors � � x Simulation � �

ANN processing is used to perform high-speed match-
ing (see Section 4.2). Regardless of the projection patterns
and/or the number of projectors, learning-based recon-
struction processing as described above can perform 3D
measurement.

4 Learning-based 3D shape reconstruction
4.1 Database creation
In the learning phase, we capture an image for each depth
and build a database consisting of image patches with
depths as labels. In order to reduce the size of the samples
dataset, we then perform feature extraction based on the
eigenimages obtained through PCA. The image patches
then are represented by feature vectors and stored in the
database.
In the proposed method, image databases are cre-

ated from either actual images or virtually captured
images. Figure 2a shows an example of a case requir-
ing actual image capturing. When a coded aperture is
installed in a projector, interference between the light
source and the lens makes virtual capture of sample
images difficult [12]. Therefore, actual image captur-
ing is necessary. In this case, patterns from the pro-
jector are imaged on a white planar board placed on
a motorized stage, are captured, and are stored in the
database.
When using off-the-shelf projectors that do not have a

coded aperture or similar modification, the virtual image
capture approach can be applied. Figure 3a shows an
example of a configuration and procedure for creating a
pattern using multiple projectors, which can be simulated

Fig. 8 Actual optical system. a Setup with two projectors. b Coded
aperture installed on the right projector lens

easily by computer graphics (CG). In practice, external
parameters for each projector and a camera as well as
internal parameters of them are acquired by geometric
calibration of the real system. Then, a pattern is simulta-
neously projected from all virtual projectors onto a virtual
planar board, and sample images are captured by a virtual
camera while moving the planar board.

4.2 Low-dimensional representation by PCA
When the proposed method estimates pixel depth, an
image patch around the pixel is compared with the pre-
viously obtained sample images. By repeating this pro-
cess for all pixels in the captured image, the 3D shape
of the target object is reconstructed. As this is a time-
consuming process, in practice, we use PCA to obtain
low-dimensional feature representation (also known as
eigenspace representation) of the image patches to reduce
the calculation time for data matching.
PCA has long been used in computer vision studies to

reduce the dimensionality of image data. Examples of PCA
has been used for such processing including facial image
recognition or analysis to represent or separate changes
of illumination or facial expressions [14, 15], object recog-
nition across various images captured from different 3D

Fig. 9 Projected patterns with high frequency aperture and circular
aperture
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Fig. 10 Eigenimages created by PCA. Eigenimages with high
contribution ratios are arranged in order from the top left

viewpoints [16], and fast image matching achieved by
dimension reduction of raw image data vectors [17].
Figure 6 shows the process of extracting features from

projected patterns. To apply PCA, we first collect the
training set from the sample images to calculate the
eigenspace of the dataset. In the proposed method, the
sample images are obtained in the calibration process,
where the images of the fronto-parallel planes are cap-
tured by an actual setup of a projector camera system
or are generated by a virtual projector simulation. From
the sample images, image patches of the same size are
extracted.
The image patches are first represented as column vec-

tors of p1,p2, · · · ,pN by simple rasterization. If the image
patches are M by M pixels, the dimension of the column
vectors is M2. Here, we use L = M2 for simplicity. The
average image patch is calculated by p̄ = 1

N
∑N

k=1 pk , and
deviation from the average data by qk = pk − p̄. A set of
orthonormal bases for representing qk can be calculated
using PCA.
In normal PCA, eigenvectors u1,u2, · · · ,uL of the L× L

covariance matrix:

C = 1
N

N∑

k=1
qkq�

k = A A�, (1)

where A =[q1 q2 · · · qN ], are used for the orthogonal
basis set. However, in computer vision problems, often
N < L, and then, we can use eigenvectors v1, v2, · · · , vN
of the N × N matrix L = A� A for forming the basis
set to save the computational cost of eigenvector calcu-
lation [14]. The basis vectors, then, can be calculated by
ui = ∑N

k=1(vi)k (qk) for i = 1, · · · ,N , where (vi)k is the
kth element of vector vi.
From the obtained basis, the representation of a new

image patch r is (w1 w2 · · · wN )�, where wi =
u�
i (r − p̄). Let eigenvectors v1, v2, · · · , vN be sorted by

the descending order of the associated eigenvalues. Then,
u1,u2, · · · ,uN are aligned in the order of optimal repre-
sentation of the training set {q1, · · · ,qN } for minimizing
the sum of errors of l2 norm. Thus, if the image patch r is
similar to the training set, (w1 w2 · · · wL′)� where L′ ≤ N ,
is a good L’-dimensional representation of r. The process
to determine the basis set using PCA can be regarded as a
process of learning the image features for representing the
pattern training set.
Figure 7 shows the eigenvector basis for different pat-

tern projections in the system shown in Fig. 3a. The top
row images are extracted from grid patterns created by
a single projector, the middle row images are from grid
patterns made using two projectors, and the bottom row
images are from grid patterns made using three projec-
tors. These results show that the basis represents the
features of the training image set for different types of light
field.
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Fig. 12 RMSE of planes with texture. Manual decode means a hand-crafted feature proposed in [12]. Our method performed better than the
previous technique except Kinect

In the database construction step, we calculate the low-
dimensional (L’-D) representations for the sample patch
images. In the 3D measurement step, we calculate the L’-
D vectors for the image patches around each pixel. These
patches are matched with the images sampled for each
depth in the L’-D vector space.

4.3 Efficient depth estimation by ANN andMRF
In the depth estimation phase, we use the proposed tech-
nique to capture a target object as shown in Figs. 2b or
3b. Then, we convert the input images to low-dimensional
representations by calculating the coefficients of eigenim-
ages. Next, we search for the sample image patch most
similar to each input image pixel. Although the proposed
method requires only 10 to 40 dimensions, computational
cost to find such patches for all the depths is still high.
To reduce the calculation cost, we use an ANN search
[18], where input data are stored in a k-d tree structure,
which reduces the processing time with minimal sacrifice
in accuracy.
Although a reconstructed 3D shape inevitably contains

some amount of noise cased by wrong depth estimation,
such wrong depths are efficiently removed or corrected
by a Markov random field (MRF) approach. For MRF,
cost volume is usually required; however, ANN originally
returns just a single cost for maximum similarity. Because
top 10% depth candidate values ordered by similarity
includes the correct depth with a 90% probability based on
our survey, we modified ANN to output that top 10% with
cost (the reciprocal of similarity). We use BP [19] to solve
the MRF.

5 Experiments
In order to verify the effectiveness of the proposed
method, we implemented two kinds of systems. The first

system uses one camera and two projectors fitted with
coded apertures. The second system uses three unal-
tered (off-the-shelf ) projectors with one camera. The
depth cues for each system are summarized in Table 1.
Experimental results using each system are described
sequentially in the following Sections 5.1 and 5.2,
respectively.

5.1 System 1 using projectors fitted with coded apertures
Generally, the shallow depth of field of an off-the-shelf
projector limits the depth measurement range of a pro-
jector camera system. Kawasaki et al. proposed a method
to install a coded aperture to extend the depth range
[12]. In the proposed system, we extend the technique
by increasing the number of projectors, as shown in
Fig. 8a. With this setup, because the optical phenomenon
is complicated, we construct a database from the learn-
ing phase by capturing actual images. Figure 9 shows
the actually observed patterns generated using a projec-
tor with a coded slit pattern aperture installed and those
created by a normal (off-the-shelf ) projector with a cir-
cular aperture for comparison. As shown in the figure,
high-frequency patterns for all ranges are preserved by the
coded aperture, whereas patterns are rapidly blurred out
by the circular aperture.

Fig. 13 Textures used in the experiments. a Checker pattern. b
Dappled texture. cMilk drop texture. d Newspaper. eWooden board
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(a) Input image (b) Result by NCC

(c) Result by the proposed 
method (PCA+ANN, 12D)

(d) Result by [12]  with 
hand-crafted  features (12D)

(e) Result by the proposed 
method (PCA+ANN, 48D)

(f) Result by [12]  with 
hand-crafted  features (48D)

Fig. 14 Reconstruction results (depth images) of the real object using
system 1. a Input image. b Result by NCC. c Result by the proposed
method (PCA+ANN, 12D). d Result by [12] with hand-crafted features
(12D). e Result by the proposed method (PCA+ANN, 48D). f Result by
[12] with hand-crafted features (48D)

5.1.1 Eigenimages created by PCA
We installed one of this projector and a camera1 and
acquired images for depths in the 250 to 550 mm range at
sampling intervals of 0.5 mm. Because of the limitation of
the length of the motorized stage, we put a close-up lens
to change the scale as to be 1/3 of real length. As a result
of a dimensional compression by PCA, the eigenimages
obtained are as in Fig. 10, showing vertical, horizontal, and
combined vertical-horizontal patterns.
5.1.2 Accuracy evaluation
In order to verify the depth estimation accuracy of the
proposed method, we conducted a depth measurement

(a) NCC (48D)
(b) Proposed 

(PCA+ANN, 48D)

Fig. 15 Reconstruction results (point clouds) of the real object using
system 1. a NCC (48D). b Proposed (PCA+ANN, 48D)

Fig. 16 System 2 implementation and projected patterns. a
Experimental system with a camera and a video projector. b Several
patterns for one-shot scan. (i) Random grids, (ii) Wave grids [20]. (iii)
Wave grids2 [21]

experiment on a flat board. In this experiment, vertical
and horizontal patterns were projected at focusing dis-
tances of 250 mm and 350 mm, respectively. The target
screen is placed on the motorized stage and moved to a
depth of 250 to 550 mm while capturing at 10 mm inter-
vals. The depth value was estimated using the proposed
method. In addition to the case using two projectors, the
case using only one projector that projects the vertical pat-
tern was also tested. The matching window sizes were set
to 16 × 16 or 12 × 12 pixels, and the number of feature
dimensions was reduced to 12 by PCA. Note that the win-
dow size and the number of feature dimensions were set

(a) hand (b) buffalo skull

(c) boots (d) monkey

Fig. 17 Objects used in the experiments. a Hand. b Buffalo skull. c
Boots. dMonkey
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Fig. 18 Comparison on RMSE with varying the number of projectors. The larger number of projectors results in better accuracy

relatively small to verify the effectiveness of increasing the
depth cue, i.e., the number of projectors. Other two meth-
ods, Microsoft Kinect 2 and an active stereo method using
a random dot pattern, were also evaluated for comparison.
Figure 11 shows the the root mean square error (RMSE)

of the estimated depth value. The graph demonstrates
that, even with smaller window, the proposed method
using two projectors could recover the correct depth for
all the tested ranges with almost the same accuracy as
Kinect 22. Accuracy of the case using one projector was
deteriorated when using smaller matching window; even
when using larger window, its accuracy was degraded at
depths of 480 mm and 550 mm.

5.1.3 Evaluation of learning-based feature extraction
In the next experiment, the robustness against the tex-
tures on a target object was evaluated; a vertical pattern
was projected onto a flat board at a focusing distance
of 250 mm. For comparison, the shapes were recon-
structed by NCC without dimension reduction, by NCC
with dimension reduction by hand-crafted feature [12],
and by using Microsoft Kinect. In the experiments, the
size of the image patch was set to 24 × 24 pixels for all
techniques. Therefore, the length of the feature vector
before dimensional compression is 24 × 24 × 3 = 1, 728.
Then, it is reduced to 20 or 48 dimensions by PCA and
hand-crafted feature technique. The experimental results
are shown in Fig. 12. The proposed method, combining

Fig. 19 Eigenimages created by PCA. Eigenimages with a high
contribution rate are arranged in order from the top left

PCA and ANN, achieved a lower RMSE than the hand-
crafted feature technique, although it is inferior to NCC.
The same experiment was also carried out on different

textures shown in Fig. 13, and the experimental results
are shown in Fig. 12. When we measured these variously
textured objects, reconstruction accuracy was equal to or
higher than NCC. In addition, some textures (e.g., dap-
pled, milk drop, and newspaper) show that the accuracy
improves when more dimensions are used. Furthermore,
if a checkered or dappled pattern image was measured,
the proposed technique can performwith almost the same
accuracy as Kinect, whereas it gets worse if the texture is
strong (e.g., milk drop, newspaper, or wood board).

5.1.4 Evaluation by 3D object reconstruction
Next, we reconstructed the shape of a real object. As with
the previous section, we compared our reconstruction
method with NCC and hand-crafted feature [12]. The
experimental results are shown as depth images in Fig. 14

Fig. 20 Reconstruction results of textured and curved surface object
with grid pattern. a Input. b Depth map (PCA). c Depth map (NCC)
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Fig. 21 Reconstruction results of textured and curved surface object
with wave pattern. a Input. b Depth map (PCA). c Depth map (NCC)

and as point clouds in Fig. 15. Hand-crafted feature
provides good reconstruction results for 48 dimensions.
However, when the reduction is performed for 12 dimen-
sions, the reconstruction quality is significantly degraded.
On the other hand, the proposed method can estimate
stable depths even when the feature dimensions are
compressed to 12 dimensions because of the efficient
dimensional reduction by PCA.

5.2 System 2 using multiple projectors
This system consists of three video projectors and a single
CCD camera. Because three projectors are off-the-shelf
products and just a static pattern is projected from each
device, virtual data creation by CG simulation is possible,
as shown in Fig. 16a.

Fig. 22 Reconstruction results of textured and curved surface object
with wave pattern 2 proposed by [21]. a Input. b depth map (PCA). c
Depth map (NCC)

Our proposed technique does not depend on projec-
tion patterns. To demonstrate this advantage, we used
several well-known patterns (Fig. 16) for one-shot scans
(spatial encoding patterns) in our experiment: a random
grid pattern, a wave grid pattern [20], and a pattern
(wave 2) that is commonly used for single color one-shot
scans [21].

5.2.1 Effect of increasing the number of projectors
We first tested the effectiveness of increasing the num-
ber of projectors while using NCC and the unicolor wave
pattern, which has relatively high reconstruction accuracy.
The unicolor wave pattern was used in each projector.
Red and green patterns were assigned to two projectors;
in the case of three projectors, blue was added to the
two-projector setup. In the learning phase, we used CG
simulation to create sample images in the 400 to 700 mm
range at sampling intervals of 1 mm. For NCC, when com-
paring a captured image to sample images, the window
size was 32× 32 for the coarse process and 24× 24 for the
fine process.
In this experiment, four objects with arbitrary shape

and texture were measured and reconstructed: a pair of
boots, a buffalo skull (buffalo), a hand, and a monkey doll
(Fig. 17). Measurement results using a conventional gray-
code method were referenced as ground truth. Figure 18
shows the results. As the number of projectors increased,
the accuracy improved for all four objects. This is because
more projectors could make more complicated patterns,
which produce better depth cue information.

5.2.2 Reconstruction of textured and curved surface objects
with various patterns

To evaluate the dimension reduction of feature values
using PCA, the following two methods were compared:
NCC without dimension reduction and the proposed
method involving dimension reduction by PCA. In this

(a) (b) (c) (d)

Fig. 23 Point clouds and reconstructed shapes of textured and
curved surface objects with wave pattern 2 proposed by [21]. a Point
cloud (ANN). b Point cloud (NCC). c Reconstructed shape (ANN). d
Reconstructed shape (NCC)
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Fig. 24 Comparison on RMSE with varying reconstruction method (NCC and PCA) and projection pattern. Note that accuracy is almost the same
between NCC and PCA (our method) where the data size and computational cost of PCA are much lower than NCC

experiment, three projectors were used. For the proposed
method with PCA, as the same condition with the experi-
ment of Section 5.1, the patch size was set to 24 × 24. For
the PCA, principal components up to the 30th level were
applied.
As a result of dimensional compression by PCA, eigen-

images were obtained (Fig. 19). A combination of line
patterns was observed in the images.
Depth maps and the reconstruction results are shown

in Figs. 20, 21, and 22, and point clouds and 3D surfaces
reconstructed from wave 2 pattern are shown in Fig. 23.
We found that the proposed method could reconstruct
object shapes with curved surfaces and non-uniform
texture using any tested projection patterns. However, we
observed some individual pattern tendencies, such as our
PCA-based reconstruction method was affected by the
complicated curve and texture while using the grid pattern
(Fig. 20).

5.2.3 Precision evaluation
We validated the 3D reconstruction precision of NCC
and the proposed PCA-based method by comparing the
results of the experiments described in Section 5.2.2.
Figure 24 shows the comparison results on RMSE, which
show no significant difference for RMSE between NCC
and PCA methods. This means that the dimension reduc-
tion by PCA did not degrade the reconstruction accuracy.
Next, we discuss the difference between CNN and PCA

for dimension reduction by reviewing the results of earlier
work [3] using three of the same objects (hand, buffalo,
and boots). In that earlier work, RMSE values for the
CNN-based method for the three objects were 1.03, 1.41,
and 1.22, and those for NCC were 1.22, 1.74, and 1.553,
respectively. This is naturally understood that CNN out-
performs other methods if the condition is the same in
recent vast studies. Since the feature extraction processes

are almost the same for both Sagawa’s and our techniques,
if CNN is used for our method for feature extraction pro-
cess, it is expected to produce better results. Incorporating
deep learning techniques into the proposed method is our
important future work; however, we believe that it does
not reduce the contribution of our paper.

5.2.4 Processing time for reconstruction
The results comparing the reconstruction time (Fig. 25)
clearly shows that PCA reduced the reconstruction time4,
despite the combination of a coarse-to-fine approach
for NCC. This is because PCA requires just 30 dimen-
sional features, whereas NCC requires 24 × 24 × 3 =
1, 728 dimensions. The computational complexity of
reconstruction is O(n) for NCC and O(log n) for PCA,
where n is the number of sample images.

6 Conclusions
We propose a learning-based 3D reconstruction tech-
nique for active stereo systems. With our technique, a
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Fig. 25 The reconstruction time by PCA and NCC
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light field is formed by attaching a coded aperture to
the projector and/or by using multiple projectors that
project arbitrary patterns and are in arbitrary poses.
The resulting light field forms patterns on 3D surfaces
with rich depth cue information. Because these cues are
not easily extracted by existing analysis, we propose a
learning-based approach that can be applied universally
for various arbitrary types of image cues. The dataset of
sample images for different depths is generated by real
(actual) scan or by CG simulation. To realize efficient
matching to sample data when processing the depth mea-
surement, the dimensionality of the raw data of image
patches in the sample image dataset is reduced by PCA
so that the the image patches in the captured image
can be compared with the sample image dataset in low-
dimensional space. Experimental results prove that our
technique is stable irrespective of target object materials,
sensor noise, and projection patterns. In the future, deep
learning techniques and real-time parallel processing will
be applied.

Endnotes
1 In this experiment, one projector was used because

using two projectors increases the robustness of the pro-
posed method, making it difficult to assess the robustness
against the object textures.

2Note that the scale was converted to 1/3 of the real
length [12].

3 The accuracy of NCC was better in that earlier work
because images were captured while changing the planar
board angle in the learning phase, but the same was not
done in our experiment.

4 The reconstruction was performed on a personal com-
puter equipping Intel Core i7 3770 (3.4 GHz, 4 core) and
32 GB RAM.
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