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Abstract

Gait-based age estimation has been extensively studied for various applications because of its high practicality. In this
paper, we propose a gait-based age estimation method using convolutional neural networks (CNNs). Because gait
features vary depending on a subject’s attributes, i.e., gender and generation, we propose the following three CNN
stages: (1) a CNN for gender estimation, (2) a CNN for age-group estimation, and (3) a CNN for age regression. We
conducted experiments using a large population gait database and confirm that the proposed method outperforms
state-of-the-art benchmarks.
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1 Introduction
Age estimation methods based on image processing have
been extensively studied for various applications. Most of
these studies focus on the images of faces, which tend to
become more wrinkled and sag with age [1–6]. However,
because high-resolution full-face images are required for
these age estimation methods, they can only be used in
situations where human images are captured at a short
distance, e.g., age confirmation for purchasing alcohol and
cigarettes or in digital signage applications.
In contrast, gait features, which represent a human’s

manner of walking, can be captured at a distance from
an uncooperative subject. The way a human walks differs
depending on his/her attributes, such as gender, physique,
muscle mass, and age. From the medical view point, there
are some studies on gait analysis to measure fatigue and
detect disease [7, 8]. In the field of informatics, in contrast,
gait-based human identification has been intensively stud-
ied for various applications such as access control, surveil-
lance, and forensics [9–11]. Gait differs depending on not
only attributes but also individuals. For instance, individ-
ual features greatly depend on posture, stride length, arm-
swinging width, and the asymmetry of walking, which is
formed from habits such as holding a shoulder bag on a
fixed side. Moreover, gait identification has already been
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used in practical cases in criminal investigations [12–
14]. Hence, we expect that gait features will be useful
for age information, and we investigated gait-based age
estimation.
Gait-based age estimation expands the scope of real-

world applications such as wide-area surveillance and the
detection of lost children and wandering elderly peo-
ple, as well as marketing research in large-scale facilities
(e.g., shopping malls, terminals, and airports). There are
several studies on gait-based age estimation. Makihara
et al. [15] proposed an age regression algorithm based
on Gaussian process regression (GPR). Lu et al. [16] pro-
posed a multilabel-guided subspace to better characterize
and correlate age and gender information, and Lu et al.
[17] proposed an ordinary preserving manifold analysis
(OPLDA) for gait-based age estimation. These methods
unfold an image-based gait feature into a feature vector,
where each dimension corresponds to each pixel. Because
spatial proximity in the image structure is never consid-
ered, these methods can easily result in overtraining. To
prevent this, we propose an age estimation approach using
a convolutional neural network (CNN) that considers spa-
tial proximity using a convolution operation and has had
great success in many image recognition research areas.
Ideally, it is possible to achieve end-to-end learning

by CNNs, i.e., any model can be trained by feeding raw
images to the CNN. However, in practice, it is not easy to
train networks in such an ideal situation. For this reason,
existing researchers have proposed some designs in which
pre-processed images are fed into the network instead of
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Table 1 Layer configurations of Single-CNN

Layer #Kernels Size/stride #Output nodes

conv1 81 5 × 5/1 –

pool1 – 3 × 3/2 –

conv1 45 7 × 7/1 –

pool2 – 2 × 2/2 –

fc3 – – 1024

fc4_age – – 1

the raw images and constraints are added to the inter-
mediate layers. In addition, recently, multi-task learning
has attracted attention [18]: this method improves the
accuracy of a target task by simultaneously learning tar-
get and other recognition tasks related to the target task.
However, this method can instead worsen the accuracy of
target tasks if other tasks adversely affect them because
the model is trained to improve all the recognition tasks
simultaneously.
Thus, in this paper, we propose sequential multi-task

learning instead of conventional parallel multi-task learn-
ing. Each CNN for non-target tasks is trained one by one
in sequence and the CNN for the target task is trained last.
In this way, we can train the network to aim for the target
task while taking other tasks into consideration.
Although the network architecture of sequential multi-

task learning should be a deep CNN formed by chaining
each CNN, we separately train each CNN, which has the
same structure as those in parallel multi-task learning,
in sequence to simply compare sequential with parallel
multi-task by excluding the influence of the depth of the
network. In other words, we predict a subject’s gender
and generation beforehand and then predict an age-by-age
regression model trained on the data for each gender and
generation combination separately.
Weconductedaperformance evaluation using the world’s

largest gait database, the OU-ISIR Gait Database, Large

Population Dataset with Age (OULP-Age) [19], which i
nclud-es ages ranging from 2 to 90 years and males an
d females to confirm the effectiveness of the proposed
method.

2 CNN-based age estimation
In this paper, the gait energy image (GEI) [20], which is a
gait feature commonly used for gait-based person identi-
fication, is used as input to our CNNs. A GEI represents
both dynamic features (i.e., swinging hands and legs while
walking) and static features (i.e., human shapes and pos-
tures). We explain how to extract a GEI as follows. First,
human silhouette sequences are obtained by background
subtraction-based graph-cut segmentation. Second, we
normalize silhouettes by size. Third, the gait period is
detected from the normalized silhouette sequences, and
finally, we generate a mean silhouette image based on the
gait period.

2.1 Single CNN-based age estimation
Figure 2a shows the network structure for the CNN-based
age estimator, and Table 1 shows the layer configurations.
GEIs are fed into the CNN that contains two triplets of
a convolution (conv) layer, batch normalization (norm)
layer, and max pooling (pool) layer. It also consists of a
pairs of a fully connected (fc) layer and a norm layer, and
a fc layer for recognition task. The conv layers and fc lay-
ers are followed by a ReLU activation function. We call a
chain of layers from the input to norm3 in Single-CNN (a
blue block shown in Fig. 2a) the Conv block.
We initialize the weight parameters of the CNN in all

layers using He’s method [21] and neuron biases with a
constant of 0. We train our models using Adam with an
initial learning rate of 0.001.We use dropout in the fc3 and
fc4 layers with a probability of 0.8 and 0.5, respectively.
The output of the final layer is considered to be the
predicted age. We train the age estimator to minimize the

Fig. 1Mean GEIs for each gender and age group
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a b

Fig. 2 The architectures of (a) Single-CNN and (b) Sequential multi-CNN

mean absolute error (MAE) between the predicted and
ground truth ages.
As mentioned in [9], in recognition tasks, variations in

the input GEIs are smaller than those for a common object
recognition task. Therefore, even such a shallow network
can represent the feature of a subject’s age.

2.2 Multistage CNN-based age estimation
Figure 1 shows themeanGEIs in the gait database (OULP-
Age) for each gender and age group. It shows that gait fea-
tures, e.g., human head-to-body ratio, hairstyles, shapes,
and postures, vary depending on a subject’s gender and
generation.

Fig. 3 L2 distance between mean GEIs of adjacent age groups (OULP-Age). Silhouette images below the age-group labels represent mean GEI
corresponding to each group
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Fig. 4 Data example in OULP-Age (cited from [19])

Thus, age estimation accuracy should improve in an age
estimator based on specific genders and generations. In
this paper, we attempt to improve age estimation using
a multistage CNN composed of three CNN-based esti-
mators, i.e., a gender estimator, age-group estimator, and
age estimator (see Fig. 2b). Note the order of gender
discrimination.
As shown in Fig. 2b, we used Conv blocks for all three

estimators. For the gender estimator, the sigmoid normal-
ized cross-entropy is employed as the loss function. For
the age-group estimator, the number of outputs of the fc4
layer is changed to five (the number of age groups) and the
softmax normalized cross-entropy is employed as a loss
function.

2.2.1 Learningmethod
The learning procedure for multi-CNN age estimation
(sequential multi-task CNN) is as follows (Fig. 2):

1 Train a gender estimator on a training set that
includes all genders and all age groups

2 Predict gender by feeding the same training data set
of (1) into the trained gender estimator

3 Train an age-group estimator for each predicted
gender using the gender-predicted data from (2)

4 Predict the age group for each predicted gender by
feeding the gender-predicted data from (2) into the
trained age-group estimator for that gender

5 Train an age estimator for each predicted gender and
each predicted age group using the data predicted in (4)

We train age estimators for each of the predicted gen-
der and age-group estimators. Because of the decrease
in the number of training data caused by this approach,
overfitting can occur easily. To prevent this, we fine-tune
pre-trained models. Specifically, the age-group estimator
for each gender is trained by fine-tuning the age-group

Fig. 5 Distributions of subjects’ age and gender in OULP-Age
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estimator trained on all gender data, and the age estimator
for each gender and each age group is trained by fine-
tuning the age estimator trained on the all age-group data
for each age.

2.2.2 Definition of age-group classes
We describe how we define age-group classes for the age-
group estimator in multi-CNN age estimation. Gait data
inOULP-Age are divided into several age groups based on
GEI similarity.
First, we dividedOULP-Age into intervals of 5 years and

generated a mean GEI for each group. Note that samples
over 60 years old were put into the same group because of
a shortage of elderly persons’ data. Second, we calculated
the L2 distance between themean GEIs of adjacent groups
(Fig. 3). The L2 distance is calculated as

dL2(x, y) =
√
√
√
√

W−1
∑

w=0

H−1
∑

h=0

∥
∥xw,h − yw,h

∥
∥
2, (1)

where x and y are the mean GEIs of adjacent groups with
height H and width W, respectively. Finally, we defined
groups with an L2 distance that is less than a threshold as
the same class and designed five classes: 0–5, 6–10, 11–15,
16–60, and over 60 years.
As we mentioned in Section 2, a GEI represents both

dynamic features (i.e., swinging hands and legs while walk-
ing) and static features (i.e., human shapes and postures).
Because people under 15 years old are growing swiftly,
they change their static features substantially, and their
GEIs have remarkable differences according to age. In
contrast, as shown in Fig. 3, GEIs extracted from peo-
ple who are between 15 to 60 years old almost do
not appear to have changing features because they have
almost stopped growing up. In other wards, differences
between statistic feature of GEI are more significant than
those of dynamic feature. Poor accuracy during age-group
estimation affects the next age regression stage, so we
decided to split the age range into five age groups so that
the CNNs can estimate age from the GEIs fairly precisely.

Table 2 The number of subjects in the training set

Age group Male Female Total

0–5 418 412 830

6–10 2349 2391 4740

11–15 2108 2265 4373

16–60 10,269 10,874 21,143

Over 60 452 385 837

Total 15,596 16,327 31,923

Table 3 The number of subjects in the testing set

Age group Male Female Total

0–5 405 425 830

6–10 2351 2389 4740

11–15 2119 2254 4373

16–60 10,220 10,923 21,143

Over 60 402 435 837

Total 15,497 16,426 31,923

3 Performance evaluation
3.1 Database
The OU-ISIR Gait Database, Large Population Dataset
with Age (OULP-Age) [19] was used to evaluate the per-
formance of the age estimation method. OULP-Age is the
world’s largest gait database that includes age and gen-
der information. It consists of 63,846 gait images (31,093
males and 32,753 females) with ages ranging from 2 to
90 years. Figure 4 shows examples of the data, and Fig. 5
shows the distribution of subjects’ age and gender in
OULP-Age. Each subject walking from the right side to
the left side along the walking course is captured by a
USB camera set at a position 4 m away from the walking
course. More information about the data capture is given
in detail in [22]. GEIs of 88 × 128 pixels extracted for a
side-view gait are provided for each subject. We split the
database into testing, training, and validation set at the
ratio of 5:4:1, respectively. Note that 20% of the training
set is used as the validation set. Tables 2 and 3 show the
number of subjects among age groups and genders in the
training set and testing set, respectively.

3.2 Training settings
The loss function for gender estimation and age-group
estimation is cross entropy, which is calculated as

L(w) = −
N

∑

n=1

M
∑

m=1
tnm log y(In;w)m, (2)

where w denotes the weight parameter matrix of the net-
work, In is the input image, N is the number of data,
M is the number of classes, y(In;w)m is the mth element
of the output vector, and tnm denotes the ground truth
class. The age estimation task is optimized by minimizing
the mean absolute error between the ground truth and
predicted age and is calculated as

Table 4 Results for gender estimation with the training set

Ground truth
Total

Male Female

Predicted
Male 15,470 165 15,635

Female 126 16,162 16,288

Total 15,596 16,327 31,923
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Table 5 Result for age-group estimator on the training set

Ground truth
Total

0–5 6–10 11–15 16–60 Over 60

(a) Predicted as
male

Predicted 0–5 404 74 1 0 0 479

6–10 10 2200 161 2 0 2373

11–15 0 76 1459 77 5 1617

16–60 0 7 485 10,120 119 10,731

Over 60 0 0 3 73 359 435

Total 414 2357 2109 10,272 483 15,635

(b) Predicted as
female

Predicted 0–5 405 19 0 0 0 424

6–10 11 2316 57 1 0 2385

11–15 0 35 1919 83 0 2037

16–60 0 13 288 10,776 40 11,117

Over 60 0 0 0 11 314 325

Total 416 2,383 2,264 10,871 354 16,288

L(w) = 1
N

N
∑

n=1

∣
∣tn − y(In;w)

∣
∣ , (3)

where w denotes the weight parameter matrix of the net-
work, In is the input image, N is the number of data,
y(In;w) is the predicted age, and tn is the ground truth
age of the nth sample. For training each network included
in the proposed method with back-propagation, we use
Adam [23]. We also use a batch size of 128 samples,
and the initial learning rate is 0.001, which is the default
value for Adam. The maximum number of epochs is 100,
although we used the weights of the network at the epoch
when the validation error is the minimum. Table 4 shows
the distribution among the gender, and Table 5 shows the
distribution among the age groups.

Table 6 MAEs and SDs for comparing the proposed methods
with existing methods not based on CNNs

Method MAE [years old] SD [years old]

Single-CNN 6.22 6.52

Sequential multi-CNN 5.84 6.50

GPR [15] 7.30 6.64

SVR [2] 7.66 7.10

OPLDA [17] 8.45 7.04

MLG [16] 10.98 14.42

The best result is indicated by the italic font

3.3 Evaluation method
The MAE, standard deviation (SD), and cumulative
score (CS) are used as the evaluation criteria for the
performance evaluation. MAE is calculated as

MAE = 1
N

N
∑

n=1
|tn − yn|, (4)

where tn and yn are the ground truth and predicted age
values for the nth test sample, respectively, and N is the
number of test samples. SD is calculated as follows.

SD =
√
√
√
√

1
N − 1

N
∑

n=1
(|tn − yn| − MAE)2 (5)

CS is calculated as

CS(l) = Nl
N

× 100%, (6)

where Nl is the number of samples whose MAE is within l
year.

3.4 Comparisonwith existing methods not based on CNNs
We compared the two proposed methods with four com-
parison methods using the protocol described in [19].

Fig. 6 Cumulative scores of Single-CNN and Sequential multi-CNN
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Table 7 MAEs and SDs for comparing the proposed method
with a conventional multi-task CNN

Method MAE [years old] SD [years old]

Sequential multi-CNN (ours) 5.84 6.50

Parallel multi-CNN 6.23 6.61

The best result is indicated by the italic font

Single-CNN : Proposed method with a single CNN
Sequential multi-CNN : Proposed method with multi-

ple CNN stages
GPR [15] : GPR-based method
SVR [2] : Support vector regression-based method
OPLDA [17] : OPLDA-based method
MLG [16] : A method that learns a multilabel-guided

(MLG) subspace for human age

The MAEs and SDs of both versions of the proposed
method and benchmarks are shown in Table 6. According
to Table 6, the results of our CNN-based methods (Single-
CNN and Sequential multi-CNN) are much better than
those of the benchmarks. Furthermore, comparing the
proposed methods, Sequential multi-CNN, which con-
siders gender and age groups, improves the performance
more than Single-CNN. In terms of SD, while the result
of the proposed method is better than that of the exist-
ing method, there is no difference between our method
and Single-CNN. This is because our method does not
estimate age well for elderly people.
The CSs of Single-CNN and Sequential multi-CNN for

each age group are shown in Fig. 6. As shown in the
graph, Sequential multi-CNN significantly outperforms
Single-CNN, especially in the 6–10, 11–15, and over
60 year groups.

3.5 Sequential multi-CNN vs. parallel multi-CNN
We compared the proposed method with multiple CNN
stages (Sequential multi-CNN) with a conventional multi-

task CNN [24] (Parallel multi-CNN). In Parallel multi-
CNN, multiple tasks are learned at the same time, while
exploiting commonalities and differences across tasks to
improve the estimation accuracy for the task-specific
models. Figure 10 shows the network architecture of
Parallel multi-CNN. Note that Parallel multi-CNN con-
sists of the same Conv block with Sequential multi-CNN
and each loss weight is 1.0, except that the last layer is
branched for each task (gender, age group, and age), to
compare only the learning strategy, namely, sequential
multi-task learning vs. parallel multi-task learning.
Table 7 shows the MAEs and SDs of Sequential multi-

CNN and Parallel multi-CNN estimated in the sameman-
ner as in Section 3. The result of Sequential multi-CNN is
better than that of Parallel multi-CNN. The CSs of Par-
allel multi-CNN and Sequential multi-CNN for each age
group are shown in Fig. 7. The graph demonstrates that
Sequential multi-CNN outperforms Parallel multi-CNN,
as is the case for the comparison with Single-CNN.
In the training phase, Sequential multi-CNN is trained

to minimize a loss for each task in the order of gender, age
group, and age, i.e., the target task is the last one, whereas
Parallel multi-CNN is trained so as to minimize multi-
task losses simultaneously. Thus, Sequential multi-CNN
can be trained more intensively and efficiently for the tar-
get task. This seems to be why the result of Sequential
multi-CNN is better.

4 Discussion
4.1 Distribution of the estimated ages corresponding to

the actual age
Figure 8 presents a scatter plot of the estimated ages of
Sequential multi-CNN with respect to the ground truth age.
Each point is colored according to the estimated age groups.
According to Fig. 8, when age-group estimation fails, age
estimation also fails, i.e., theMAE is larger, especially when
the estimated age groups are 11–15 and over 60 years.

Fig. 7 Cumulative scores of Parallel multi-CNN and Sequential multi-CNN
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Fig. 8 Scatter plot of the estimated ages of Sequential multi-CNN with respect to the ground truth age. The dotted line indicates where the
estimated age equals the ground truth age

4.2 Order of learning tasks in Sequential multi-CNN
In Sequential multi-CNN, CNNs are trained in the order
of gender, age group, and age. The reasons why learning is
performed in this order are as follows:

• Age is trained last because age estimation is the target task.
• Age group is trained second to the last because age

group has a stronger relationship with age.
• Gender is trained first because gender is easier to

recognize than age group.

Tables 8 and 9 show the confusionmatrices of the results
of gender and age-group estimation using the test set,
respectively. These matrices show that the recognition
rate of gender is higher than that of age group. More
specifically, there are more than a few cases of incor-
rect recognition, especially for age-group estimation for
pedestrians over 60 years. The proposed method has the
problem that the failure of each estimation task causes
successive failures in the next tasks. To avoid this, we need
further studies to determine how to combine the CNNs at
each stage into a single network so that it can effectively
minimize the error of all the stages.

Table 8 Results for gender estimation with the testing set

Ground truth
Total

Male Female

Predicted
Male 15,581 413 15,594

Female 316 16,013 16,329

Total 15,497 16,426 31,923

4.3 Difference of accuracy betweenmale and female
Table 10 shows the gender-specific MAEs and SDs of
Sequential multi-CNN, and Fig. 9 shows the graph of
gender-specific CSs. As shown in Table 10 and Fig. 9,
both MAE and SD of female subjects are worse than those
of male subjects overall, especially over 60. Moreover,
the CSs of Sequential multi-CNN is worse than that of
Single-CNN in the case of 11–15 age group.
This is because the female-specific personal features

such as hairstyle and clothes (e.g., skirt and one-piece)

Table 9 Results for age-group estimation with the testing set

Ground truth
Total

0–5 6–10 11–15 16–60 Over 60

(a) Male

Predicted 0–5 266 212 1 1 0 480

6–10 36 1912 350 4 9 2311

11–15 0 213 1209 120 15 1557

16–60 0 17 604 9969 244 10,834

Over 60 0 0 9 137 266 412

Total 302 2354 2173 10,231 534 15,594

(b) Female

Predicted 0–5 334 132 1 0 0 467

6–10 108 2178 317 17 0 2620

11–15 0 182 1099 271 3 1555

16–60 0 66 756 10,367 257 11,446

Over 60 0 2 5 81 153 241

Total 442 2560 2178 10,736 413 16,329
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Table 10 Gender-specific MAEs and SDs of Sequential multi-CNN

Gender MAE [years old] SD [years old]

Male 5.60 6.19

Female 6.07 6.77

The best result is indicated by the italic font

affect the accuracy of age estimation. It is easy to estimate
age of both male and female children due to distinctive
features such as height. Adult female, in contrast, have
more variations in hairstyle and clothes than adult male.
Therefore, it is more difficult to estimate the age of female
than that of male in adult generation.

4.4 Applicability of sequential multi-task learning to
other tasks

In this paper, it was confirmed that sequential multi-task
learning is more effective for age estimation than CNN-
based single task learning and parallel multi-task learning
(Fig. 10). The framework of sequential multi-task learning
can be applied not only to age estimation but also to
other recognition tasks, e.g., person identification and
health estimation. Therefore, various applications of the

sequential multi-task learning can be expected in both the
medical and information-science fields.

5 Conclusion
In this paper, we proposed a gait-based age estima-
tion method using CNNs. To estimate ages based on
differences in gait features depending on gender and
generation, we proposed a method composed of three
stages of CNNs: a gender estimator, an age-group esti-
mator, and an age estimator. The results of the exper-
iments using a large-scale gait database ( OULP-Age)
yielded an MAE of 5.84 years, which outperforms the
benchmarks.
In the future, we plan to perform two studies to enhance

age estimation. First, as mentioned in Section 4.2, we will
train a deeper network formed by chaining CNNs for sev-
eral tasks instead of a combination of sequential CNNs.
In this way, we can avoid degrading the accuracy of the
proposed method due to the incorrect recognition of each
task. Second, we need to collect more gait data because
the database we used lacks data on elderly subjects. By
doing this, we will be able to improve our method for all
generations.

a

b

Fig. 9 Gender-specific cumulative scores of Sequential multi-CNN. aMale. b Female
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Fig. 10 Network architecture of the conventional multi-task CNN
(Parallel multi-CNN)
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