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Abstract

The output of convolutional neural networks (CNNs) has been shown to be discontinuous which can make the CNN
image classifier vulnerable to small well-tuned artificial perturbation. That is, images modified by conducting such
alteration (i.e., adversarial perturbation) that make little difference to the human eyes can completely change the CNN
classification results. In this paper, we propose a practical attack using differential evolution (DE) for generating
effective adversarial perturbations. We comprehensively evaluate the effectiveness of different types of DEs for
conducting the attack on different network structures. The proposed method only modifies five pixels (i.e., few-pixel
attack), and it is a black-box attack which only requires the miracle feedback of the target CNN systems. The results
show that under strict constraints which simultaneously control the number of pixels changed and overall
perturbation strength, attacking can achieve 72.29%, 72.30%, and 61.28% non-targeted attack success rates, with
88.68%, 83.63%, and 73.07% confidence on average, on three common types of CNNs. The attack only requires
modifying five pixels with 20.44, 14.28, and 22.98 pixel value distortion. Thus, we show that current deep neural
networks are also vulnerable to such simpler black-box attacks even under very limited attack conditions.

Keywords: Artificial intelligence, Image processing, Adversarial machine learning

1 Introduction
Recent research has shown that deep convolutional neural
network (CNN) can achieve human-competitive accuracy
on various image recognition tasks [25]. However, several
recent studies have suggested that the mapping learned by
CNN from input image data to the output classification
results is not continuous. That is, there are some specific
data points (or possibly some continuous regions) in the
input space whose classification labels can be changed by
adding even very small perturbations. Such modification
is called “adversarial perturbation” in the case that poten-
tial adversaries wish to abuse such a characteristic of CNN
to make it misclassify [8, 12, 18, 24]. By using various opti-
mization methods, tiny well-tuned additive perturbations
which are expected to be imperceptible to the human eyes
but be able to alter the classification results significantly
can be calculated effectively. In specific, adding the adver-
sarial perturbation can lead the target CNN classifier to
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either a specific or arbitrary class, both are different from
the true class.
In this research, we propose and evaluate a black-box

method of generating adversarial perturbation based on
differential evolution, a natural-inspired method which
makes no assumptions about the problem being opti-
mized and can effectively search a very wide area of
solution space. Our proposal has mainly the following
contribution and advantages compared to previous works:

• Effectiveness—With the best parameter setting of
differential evolution (DE) and extremely limited
conditions, the attack can achieve 72.29%, 72.30%,
and 61.28% success rates of conducting non-targeted
attacks on three types of common convolutional
neural network structures: network in network [11],
all convolutional network [21], and VGG16 [20]
trained on CIFAR-10 dataset (Fig. 1). Further results
on ImageNet dataset show that in non-targeted
attacking, the BVLC AlexNet model can alter the
labels of 31.87% of the validation images.

• Black-box attack —The proposed attack only needs
miracle reaction (probability labels) from the target
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Fig. 1 Examples of few-pixel attack. The proposed attack that successfully fooled three types of DNNs trained on CIFAR-10 dataset: the all
convolutional network (AllConv), network in network (NiN), and VGG. The original class labels are in black color while the target class labels are in red

CNN system while many previous attacks require
access to the inner information such as gradients,
network structures, and training data, which in most
cases is hard or even not available in practice. The

capability of being able to conduct black-box attack
using DE is based on the fact that it makes no
assumption on the optimization problem of finding
effective perturbation such that does not abstract the
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problem to any explicit target functions according to
the assumption, but works directly on
increasing(decreasing) the probability label values of
the target (true) classes.

• Efficiency—Many previous attacks of creating
adversarial perturbation require alternation on a
considerable amount of pixels such that it may risk
the possibility being perceptible to human recognition
systems as well as require higher cost of conducting
the modification (i.e., the more pixels that need to be
modified, the higher the cost). The proposed attack
only requires modification on 5 pixels with an average
distortion of 19.23 pixel value per channel per pixel
for CIFAR-10 images. Specifically, the modification
on 5 pixels is further pressured by adding a term that
is proportional to the strength of accumulated
modification in the fitness functions of DEs.

• Scalability—Being able to attack more types of CNNs
(e.g., networks that are not differentiable or when the
gradient calculation is difficult) as long as the
feedback of the target systems is available.

The rest of the paper is as follows: Section 2 introduces
the previous attack methods and their features, as well as
compares with the proposed method. Section 3 describes
why and how to use DE to generate effective adversarial
perturbation under various settings. In Section 4, several
measures are proposed for evaluating the effectiveness
of DE-based attack. Section 5 discusses the experimental
results and possible future extension.

2 Related works
Though CNN has given outstanding performance of clas-
sification in different practical domains, its security prob-
lem has been also emphasized [1, 2]. For example, in
the domain of natural language processing, the CNN-
based text classification can be easily fooled by purposely
adding or replacing specific words or letters [10]. For
speech-to-text recognition, the signal can be also altered
by adding a tiny additional signal such that the result-
ing text can be very different from the origin [4]. The
CNN-based image recognition suffers the same problem.
In fact, the intriguing (or vulnerable) characteristic that
CNN is sensitive to well-tuned artificial perturbation was
first reported by evaluating the continuity of CNN output
with respect to small change on input image [24]. Accord-
ingly, various optimization approaches are utilized for
generating effective perturbation to attack the CNN image
classifiers. Goodfellow et al. proposed “fast gradient sign”
algorithm for calculating effective perturbation based on a
hypothesis in which the linearity and high-dimensions of
inputs are the main reason that a broad class of networks
is sensitive to small perturbation [8]. Moosavi-Dezfooli
et al. proposed a greedy perturbation searching method

by assuming the linearity of CNN decision boundaries
[12]. Papernot et al. utilize Jacobian matrix with respect
to the network to build “adversarial saliency map” which
indicates the effectiveness of conducting a fixed-length
perturbation through the direction of each axis [18, 19].
Based on these preliminary works, attacks in extreme con-
ditions are also proposed to show the vulnerability of
CNN is even more serious. Su et al. show that one-pixel
perturbation is enough to change the classification results
of a CNN in most cases [23]. Unlike common image-
specific perturbations, the universal adversarial perturba-
tion is a single constant perturbation that can fool a large
amount of images at the same time [14].
To the best of our knowledge, the one-pixel attack is

the only existing work which implements DE for finding
optimized adversarial perturbation [23]. The work shows
that DE can generate effective solution even under very
limited condition (i.e., only one pixel can be modified).
However, the one-pixel attack only aims to show the pos-
sibility of conducting the attack with DE and implements
one kind of simple DE with a constant mutation factor F
value as 0.5 and no crossover, which leaves the problem
of evaluating and comparing other kinds of DE variants.
The proposed few-pixel attack indeed modifies more pix-
els than one-pixel attack. However, it does not mean that
few-pixel attack requires more access to the target image
since even for the one-pixel attack, it is also necessary to
access all pixels of the image to find the best pixel to per-
turb (i.e., the availability to modify an arbitrary pixel of an
image). In addition, one-pixel attack does not fully con-
sider the constraints in practice, for example, there is no
terms for controlling the distortion of pixels in the fit-
ness function used by one-pixel attack. On the other side,
the proposed few-pixel attack still requires modification
on less pixels compared to most previous works. Further-
more, in this research, we focus on non-targeted attacks
while one-pixel attack is based on targeted attack. Due
to the significant difference on successful rate of attack
and other factors such as time and resource consumption,
the simpler non-targeted attack can be more practical,
especially in the case of large-scale attack. Comparisons
between the proposed and one-pixel attack showing the
difference of visualization are shown in Fig. 2.
Other black-box attacks that require no internal knowl-

edge about the target systems such as gradients, have also
been proposed. Papernot et al. proposed the first black-
box attack against CNN which consists in training a local
model to substitute for the target CNN, using inputs syn-
thetically generated by an adversary and labeled by the
target CNN. The local duplication is then used for crafting
adversarial examples which are found being successfully
misclassified by the targeted CNN [6]. Narodytska et al.,
implemented a greedy local search to perturb a small set of pi-
xels of an imagewhich treats the target CNN as amiracle [17].
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Fig. 2 Comparing one- and few-pixel attack. A visual comparison between the adversarial images generated by proposed attack and one-pixel
attack. Since the former has control mechanisms embedded in the fitness function, the distortion it caused on single pixel is expected to be less
perceptible than one-pixel attack. As can be seen, even if requiring perturbing more pixels, the proposed attack can have similar or better visual
effect to one-pixel attack in practice which only few or even none of the perturbed pixels is noticeable

3 Methodology
3.1 Problem description
Calculating adversarial perturbation added to a natural
image for confusing CNN classification can be abstracted
as an optimization problem with constraints. Assuming

that a 2D three-channel RGB image can be represented
by a flattened n-dimensional vector in which each scalar
element represents a tuple consisting of three-channel
values of a pixel. Let f be the target image classifier which
receives n-dimensional inputs and x = (x1, .., xn) be the
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original natural image classified with predicted label cp
according to f. Note that cp might not be the ground truth
of x since f can also misclassify without any outside inter-
fering. The soft label (i.e., probability) of sample x being
with label cp is represented as fcp(x). A vector e(x) =
(e1, .., en) which has the same dimensions to x represents
a specific additive perturbation with respect to a specific
natural image x, which is being able to alter the label of x
from cp to the target class tadv where cp �= tadv with the
modification strength less than maximum modification
limitation L, which for example can be measured by the
length of vector e(x) (e.g., the accumulated pixel values
modified) or the number of non-zero elements of e(x) (i.e.,
the number of pixels modified). Therefore, the ultimate
goal of adversaries is to find the optimized solution e(x)∗
for Eq. 1. In the case of targeted attack, the target class tadv
is designated while for non-targeted attack, it can be an
arbitrary class as long as tadv �= cp.

maximize
e(x)∗

ftadv(x + e(x))

subject to ‖e(x)‖ ≤ L
(1)

In the case of this research, the maximum modification
limitation L is set to be two empirical constraints: (1)
The number of pixels that can be modified, which is rep-
resented by d, is set to be 5 while the specific index of
each modified pixel is not fixed. The constraint can be
represented as ‖e(x)‖0 ≤ d where d = 5. Except the ele-
ments need tomodify, others in vector e(x) are left to zero.
(2) The fitness functions of DE utilized in this research
favor the modification with smaller accumulated pixel val-
ues more than success rate of attack such that controlling
the accumulated pixel values becomes the priority dur-
ing the evolution. Such constraints are more restricted
compared to many previous works which only implement
restrictions similar to either constraint 1 or 2 [13, 14].
Geometrically, the entire input space of a CNN image

classifier can be seen as a n-dimensional cube such that
the proposed attacks that modifies five pixels are essen-
tially searching the effective perturbation on the 5 slices
of input space where 5 ≤ d, which the size of the slice is
further limited by constraints on distortion implemented
in the fitness function. In other words, the search of each
iteration of DE is limited to towards five directions also
with limited length of steps which each direction is per-
pendicular to a certain axes of the input space coordinate.
However, the probe can still logically find an arbitrary data
point in the input space by using multiple iterations. Even
if in each iteration the search directions and area of the
proposed attack are limited, it can still probe the entire
input space towards arbitrary 3D direction to find bet-
ter optima by iterating the progress. This is illustrated in
Fig. 3 for the case when n = 3 and d = 2.

3.2 Perturbation strength
In this research, a five-pixel modification is chosen as
the strength of attack by considering the practicability.
First, the few-pixel modification is more efficient than the
global perturbation [14] that modifies each or most pix-
els of an image due to less variables need to solve. On
the other side, one-pixel attack numerically requires the
least cost among most of the attacks [23]. However, the
one-pixel attack can be hardly imperceptible in practice
since all attack strength concentrates on the single modi-
fied pixel. By adding the number of pixels that can modify,
the strength can be distributed to make the modification
less visible. In practice, a scenario that one-pixel attack is
available but five-pixel attack is not is not common. The
pixel values modified by the proposed attack are still 8 bits
(0–255) which are legal for three-channel RGB pixels.

3.3 Differential evolution and its variants
Differential evolution (DE) is currently one of the most
effective stochastic real parameter optimization method
for solving complex multi-modal optimization problems
[7, 22]. Similar to genetic algorithms and other evolu-
tionary algorithms, DE acts as a black-box probe which
does not care the specific form of the target functions.
Thus, it can be utilized on a wider range of optimiza-
tion problems (e.g, non-differentiable, dynamic, noisy).
DE iteratively improves the quality of the population
which each individual in the population is a potential solu-
tion for the corresponding target problem. In particular,
DE considers the difference of the individual genomes as
search ranges within each iteration to explore the solu-
tion space. In addition, DE uses one-to-one selection
holds only between an ancestor and its offspring which
is generated through mutation and recombination, rather
than the commonly used tournament selection in many
other evolutionary algorithms. Such a selection strat-
egy has a superior ability to preserve population diver-
sity better than tournament selection where elites and
their offspring may dominate the population after few
iterations [5].
Different DE variants mainly demarcate from others

on the ways of conducting mutation and crossover. We
specifically introduce how to combine different strategies
of mutation and crossover for implementing various kinds
of DEs. The specific settings of DEs implemented in this
research are summarized in Tables 1 and 2.

3.3.1 Mutation
In the biological point of view as well as genetic algo-
rithms inspired, the mutation is a random change on an
individual xi of the population in order to gain higher
diversity through iterations. Being different from genetic
algorithms, which directly conduct random change of val-
ues on xi, one of the most basic mutation strategies is
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Fig. 3 Geometrical illustration of few-pixel attack. An illustration of conducting two-pixel perturbation attack in a 3D input space coordinate (i.e., the
image has three pixels). The original natural image is a data point represented by S1. Due to the limitation on the number of dimensions that can be
probed, in each iteration, the search is only allowed on a 2D plane (shown by green, blue, and orange planes in the figure) around the current
solution. As shown, after three iterations which the direction of probe is shown by yellow arrows, it finds the optimal point. By iterating the
evolution of DE, the 2D probe can actually move in towards arbitrary directions in 3D space to find the optima

to randomly choose three other individuals, indexed by
r1, r2, and r3 from the current population, and combine
them with a scale parameter F to form the mutated xi,
denoted by xi∗. Specifically, the xi∗ is obtained by solving
Eq. 2:

xi∗ = xr1 + F(xr2 − xr3),
r1 �= r2 �= r3,

(2)

where F is the scale parameter set to be in the range
from 0 to 1. It can be seen that under such a scheme,
the mutated xi∗ has no relationship with its prototype xi.
Their relations can be established in the crossover step.
The intuition of such a mutation is using the individual

xr1 as the basis, plus the difference (scaled by the factor F)
between another two individuals, xr2 and xr3, to generate
child. Such difference indicates a meaningful step in the
search space. It is actually the different values of param-
eter F demarcates from one mutation to another. Instead

Table 1 Results of conducting the proposed attack on all
convolutional network (AllConv) with different F values

Variant Success rate (%) Confidence (%) Cost

0.5/0.5/0.5 71.46 89.38 24.66

0.9/0.5/0.5 72.00 88.22 25.71

0.1/0.5/0.5 70.63 90.86 20.32

Among the measures in the first row, the cost indicates the average distortion in
pixel values per channel per pixel

of a constant F, it can be also set to be random and to be
specific for each individual in a certain iteration. In this
research, we respectively adopt different F to evaluate the
influence to the attack success rates.

3.3.2 Crossover
The crossover step after mutation concerns about com-
bining the original individual xi and its corresponding
child xi∗. This is the step that xi and xi∗ actually establish
the connection to each other, which is used for improv-
ing the potential diversity of the population. Specifically,
the crossover exchanges the components of xi∗ obtained

Table 2 Results of conducting the proposed attack on all
convolutional network (AllConv) with different crossover
strategies

Variant Success rate (%) Confidence (%) Cost

0.5/0.5/0.5 71.46 89.38 24.66

0.5/0.5/0.9 71.66 88.60 24.43

0.5/0.5/0.1 71.05 89.71 24.60

0.5/0.9/0.9 72.06 90.19 25.03

0.5/0.9/0.5 70.86 89.58 24.69

0.5/0.9/0.1 72.06 88.70 24.16

0.5/0.1/0.9 71.04 88.98 24.68

0.5/0.1/0.1 72.29 88.68 24.64

0.5/0.1/0.5 72.00 88.98 24.86
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by mutation step, with the corresponding elements of its
prototype xi, by using two kinds of crossover strategies:
exponential crossover and binomial crossover.
Simply put, the exponential crossover replaces a series

of elements of xi∗, saying any elements without the range
from index i to j, with the elements of xi that own the
same index, where 1 � i � j � D where D is the size
of an individual. On the other hand, binomial crossover
replaces every element of xi∗ according to a probability of
crossover, denoted by Cr . Specifically, a random number
within the range from 0 to 1 is generated for each element
in xi∗, replace with the corresponding value of xi if it is
smaller than Cr .
Each individual (genome) of DE holds the information

of one five-pixel attack (perturbation). That is, each indi-
vidual represents a series of perturbation on five pixels,
which the information of each pixel perturbation includes
its x-y coordinate position and RGB value. Hence, an
individual is encoded in a 5 × 5 array.
Simply put, one single perturbation consists of its loca-

tion of conducting perturbation and specific values of
perturbation. We consider an approach by combining
exponential and binomial crossover such that the new
crossovers probabilistically exchange these two types of
information between a current individual and its off-
spring. Specifically, we consider the following four types
of crossovers:

• Crossover on position information. The crossover
only replaces the position information (i.e., the first
two dimensions) of xi∗ with the one owned by xi. A
probability value Cp is used to identify if the
crossover triggers or not. Exchanging information of
coordinate is for letting the offspring inherit the
location information of vulnerable pixels containing
in current population.

• Crossover on RGB values. The crossover only
replaces the RGB value information (i.e., the last
three dimensions) of xi∗ with the one owned by xi. A
probability value Crgb is used to identify if the
crossover triggers or not. Exchanging information of
coordinate is for letting the offspring inherits the
information of vulnerable RGB perturbation values
containing in current population.

• Crossover for both position and RGB values. Such a
crossover is the combination of the above two,
according to the assumption that both crossovers are
useful.

• No crossover. The opposite to the one above,
assuming that exchanging either information of pixel
locations or RGB values is not meaningful.

3.3.3 Selection
The selection step implemented by this research makes
no difference to the standard DE selection setting.

Specifically, unlike the tournament selection in genetic
algorithms which ranks all population based on the indi-
vidual fitness and selects amount of best individuals,
DE uses a one-to-one selection holds only competitions
between a current individual xi and its offspring x∗

i which
is generated throughmutation and crossover. This ensures
that DE retains the very best so-far solution at each index;
therefore, the diversity can be well preserved.

3.3.4 Other DE variants
It is worth to mention that even if different variants
of DE have been implemented and evaluated in this
research, there are actually even more complex vari-
ations/improvements such as self-adaptive [3], multi-
objective [27], among others, which can potentially
further improve the effectiveness of attack.
While the one-pixel attack only utilizes single type of DE

for attack [23], the proposed method explores the attack
effectiveness through various DEs with a range of differ-
ent parameter settings. A comparison is shown in Fig. 4
between these two attacks.

3.4 Using differential evolution for generating
adversarial perturbation

The use of DE for generating adversarial images have the
following main advantages:

• Higher probability of finding global optima—DE is a
meta-heuristic which is relatively less subject to local
minima than gradient descent or greedy search
algorithms (this is in part due to the diversity keeping
mechanisms and the use of a set of candidate
solutions). Capability of finding better solutions (e.g.,
global optima rather than local) is necessary in our
case since we have implemented more restricted
constraints on perturbation in this research such that
the quality of optimization solution has to be
guaranteed to a high extent.

• Require less information from target system—DE
does not require the optimization problem to be
differentiable as is required by classical optimization
methods such as gradient descent and quasi-Newton
methods. This is critical in the case of generating
adversarial images since (1) there are networks that
are not differentiable, for instance [26] and (2)
calculating gradient requires much more information
about the target system which can be hardly realistic
in many cases.

• Simplicity—The approach proposed here is
independent of the classifier used. For the attack to
take place, it is sufficient to know the probability
labels. In addition, most of previous works abstract
the problem of searching the effective perturbation to
a specific optimization problem (e.g., an explicit
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Fig. 4 Difference on parameter settings. A comparison between the proposed attack and one-pixel attack showing the difference on parameter
settings

target function with constraints). Namely, additional
assumptions are made to the searching problem, and
this might induce additional complexity. Using DE
does not solve any explicit target functions but
directly works with the probability label value of the
target classes.

3.5 Method and settings
The DE is used to find the best perturbation which can
achieve high probability label of target class and low
modification strength. The information of a proposed
five-pixel perturbation (which is one individual of the DE
population) is encoded into a 5D array which each dimen-
sion contains five elements: x-y-coordinates and RGB
value of one-pixel perturbation. The initial number of
population is 400, and during each iteration, another 400
candidate solutions (children) will be produced by various
types of mutation and crossover. Then a 400-knock-out
selection is conducted between each pair of individual and
its offspring, to produce the new population with the same
size to the last generation. The fitness function is defined
as Eq. 3:

F(xi) = 0.25Pt(xi) + 0.75C(xi),
C(xi) = (R(xi) + G(xi) + B(xi))/256,

(3)

where F(xi) is the fitness value of an individual xi where
i = 1, .., 800 in a certain generation. The F(xi) is a
combination of its probability value belonging to the true
class t, Pt(xi), and the cost of attack C(xi). Weight values
of 0.25 and 0.75 are empirically assigned to the two terms.

We find that a higher weight value assigned to Pt(xi) will
make the DE evolution take much less care of C(xi) such
that the cost of attack increases drastically. While doing
the opposite will increase Pt(xi) but less significantly. Such
weights indicate that obtaining a xi with low Pt(xi) is much
easier than a xi with low C(xi). The cost C(xi) is mea-
sured as normalized pixel value changed on three RGB
channels, which is expected to be small to guarantee the
modification can be invisible. For an individual, the lower
the fitness, the better the quality hence easier the survival.
The maximum number of generation is set to 100, and

early-stop criteria can be triggered when there is at least
one individual in the population whose fitness is less
than 0.007. Once stopped, the label of true class is com-
pared with the highest non-true class to evaluate if the
attack succeeded. The initial population is initialized by
using uniform distributionsU(1, 32) for CIFAR-10 images
for generating x-y coordinate (e.g., the image has a size
of 32 × 32 in CIFAR-10) and Gaussian distributions N
(μ = 128, σ = 127) for RGB values. For ImageNet, the
setting is similar.

3.6 Finding the best variant
In order to find the best DE variant for generating
adversarial samples, we propose a greedy search method
which starts from a DE variant with basic setting. Then,
we gradually alter the parameter settings to evaluate the
effect on the success rate of attack and come up with a
local-optimized setting, which is further used for attack
under several different scenarios. Specifically, it is mainly
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the mutation and crossover that differ different types of
DE variants. We implement a basic DE which enables
both mutation and crossover to middle levels. Then, we
adjust the value of each single parameter while keep others
unchanged to conduct the test.
For example, the four types of crossover proposed in

Section 3.3.2 can be achieved by adjusting the correspond-
ing crossover probability Cp and Crgb. For instance, both
Cp and Crgb are set to be a very small number means to
disable the crossover.

4 Evaluation and results
The following measures are utilized for evaluating the
effectiveness and efficiency of the proposed attack:

• Success rate—It is defined as the empirical
probability of a natural image that can be successfully
altered to another pre-defined (targeted attack) and
arbitrary class (non-targeted attack) by adding the
perturbation.

• Confidence—The measure indicates the average
probability label of the target class output from the
target system when successfully altered the label of
the image from true to target.

• Average distortion—The average distortion on the
single pixel attacked by taking the average
modification on the three color channels is used for
evaluating the cost of attack. Specifically, the cost is
high if the value of average distortion is high such that
it is more likely to be perceptible to the human eyes.

4.1 Comparison of DE variants and further experiments
Preliminary experiments are for evaluating different DEs
(i.e., different mutation factor F value and crossover
strategies). The mutation factor F will be abbreviated as
“F value” in the rest of the paper. We utilize a greedy
search approach to find the local-optimized DE variant.
Specifically, we first propose a standard model which
enables all settings to mid-levels. Then, the settings are
gradually changed one by one for evaluating the influence
to the effectiveness of attack. The local-optimized model
is found for conducting further experiments with more
datasets and network structures.
Specifically, the comparison of DE variants are con-

ducted on the all convolution network [21] by launch-
ing non-targeted attacks for finding a local-optimized
model. The local-optimized model is further evaluated on
network in network [11] and VGG16 network [20] trained
on CIFAR-10 dataset [9]. At last, the model is applied
for non-targeted attacking the BVLC AlexNet network
trained on ImageNet dataset with the same DE para-
mater settings used on the CIFAR-10 dataset, although
ImageNet has a search space 50 times larger than CIFAR-
10, to evaluate the generalization of the proposed attack to
large images. Given the time constraints, we conduct the

experiment without proportionally increasing the number
of evaluations, i.e.,wekeep the same number of evaluations.
The structures of the networks are described in Fig. 5.

The network setting were kept as similar as possible to the
original with a few modifications in order to achieve the
highest classification accuracy. All of them are with ReLu
activation functions. For each of the attacks on the three
types of CIFAR-10 neural networks, 500 natural image
samples are randomly selected from the test dataset to
conduct the attack. For BVLC AlexNet, we use 250 sam-
ples from ILSVRC 2012 validation set selected randomly
for the attack.

4.2 Results
The success rates, confidence, and perturbation strength
for the attack using different DE variants on all con-
volutional network is shown in Tables 1 and 2. Then,
local-optimizedDEsare selected to conduct further exper-
iments on three additional types of networks: network in
network (NIN), VGG16 network, and AlexNet BVLC net-
work. The first two networks are trained on CIFAR-10
dataset (same as all convolutional network), and the
AlexNet network is based on ImageNet dataset. The
results are shown in Table 3.
Each type of DE variant is abbreviated in the format

“Fvalue/Cp/Crgb.” For example, 0.5/0.5/0.5 denotes the
model with its F value, crossover rate of coordinate, and
RGB value all equal to 0.5.We choose the 0.5/0.5/0.5 as the
standard prototype model to compare with other variants,
since it enables all settings to a mid extent.

4.2.1 Effectiveness and efficiency of attack
First, the influence of changing F value is evaluated by
implementing the standard model with different F values.
According to the results in Table 1, higher F values give
very limited increase on success rate of attack however
require a considerable amount of more distortion. For
example, shifting from 0.1/0.5/0.5 to 0.9/0.5/0.5 increases
only 1.37% success rate with a cost of increasing 5.39
(26.53%) pixel value. Since the F controls how far the
distance starting from the current individuals to probe
new solutions, the intuition of this result indicates that
moving smaller steps in the solution space might find
new solutions that are similar to the prototypes, with
comparative attack success rate but more efficient (i.e.,
the prototypes are further optimized), whilemoving larger
steps may find totally different solutions with higher dis-
tortion required. This might indicate that in the solution
space, the candidate solutions (vulnerable pixels) are gath-
ered within groups and moving by small steps from the
existing solutions can find new individuals with better
quality (i.e., require less distortion). Therefore, it comes to
a conclusion that smaller F values can effectively decrease
the distortion needed for the attack.
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Fig. 5 The structure of three networks

Then, we keep the F value as 0.5 for conducting further
experiments of comparing the influence of two crossover
strategies. The results show that generally both types of
crossover are not helpful for improving success rate and
decreasing distortion required. For example, comparing
0.5/0.1/0.1 which disables both crossovers, and 0.5/0.1/0.9
(0.5/0.9/0.1) which only enables one crossover, shows
1.25% (0.23%) reduction on success rate and only 0.04
(0.48) decrease on distortion. Enabling both crossovers

Table 3 Results of conducting proposed attacks on additional
datasets by using local-optimized DE 0.1/0.1/0.1 and 0.5/0.1/0.1

Variant Success rate (%) Confidence (%) Cost

All convolutional net

0.1/0.1/0.1 71.86 90.30 20.44

0.5/0.1/0.1 72.29 88.68 24.64

Network in network

0.1/0.1/0.1 72.30 83.63 14.28

0.5/0.1/0.1 70.63 81.17 16.30

VGG network

0.1/0.1/0.1 56.49 67.36 22.98

0.5/0.1/0.1 61.28 73.07 24.62

BVLC network

0.1/0.1/0.1 31.87 14.88 2.36

0.5/0.1/0.1 26.69 14.79 6.19

(0.5/0.9/0.9) is also not helpful in a similar way. Such
results show that the quality of perturbation can not
be significantly improved by replacing the coordinate or
RGB color information of children population with their
corresponding ancestors.
According to the results of comparison, we choose the

0.5/0.1/0.1 and 0.1/0.1/0.1 as the two local-optimized
models for conducting further experiments. Note that
as mentioned above, setting a smaller F value can be
helpful for decreasing the distortion on perturbed pixels.
On CIFAR-10, the success rates of proposed attacks on
three types of networks show the generalized effectiveness
of the proposed attack through different network struc-
tures. The all convolutional network and network in net-
work structures show great vulnerability. Specifically, the
all convolutional network gives the highest attack con-
fidence while network in network requires least cost of
attack. Both of them have relatively high success rate of
attack. The VGG16 network on the other side gives the
average highest robustness among the three networks.
In addition, it can be seen that a smaller F value is
effective for reducing distortion through different net-
work structures.
On ImageNet, the results show that the proposed attack

can be generalized to large size images and fool the
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corresponding larger neural network. Note that the Ima-
geNet results are done with the same settings as CIFAR-10
while the resolution of images we use for the ImageNet
test is 227 × 227, which is 50 times larger than CIFAR-
10 (32 × 32). However, confidence results on CIFAR-10
dataset is comparatively much higher than ImageNet. In
each successful attack, the probability label of the target
class (selected by the attack) is the highest. Therefore, the
average confidence on ImageNet is relatively low but tell
us that the remaining 999 classes are even lower such that
the output becomes an almost uniform soft label distri-
bution. To sum it up, the attack can break the confidence
of AlexNet to a nearly uniform soft label distribution. The
results indicate the large images can be less vulnerable
than mid-sized images.
The results of attacks are competitive with previous

non-targeted attack methods which need much more dis-
tortions (Table 4).

4.2.2 Original-target class pairs
The frequency of original-targeted class pairs of success-
ful attack is evaluated for the two best DE settings, which
are illustrated in Figs. 6 and 7. In addition, the frequency
of a specific class acting as original and targeted classes
is shown in Fig. 8. Since there is no term in the fit-
ness function used to favor the accuracy of a specific
target class (i.e., non-targeted attack), the evolved pertur-
bation is expected to trend to move the original images
towards the most close target class such that the results of
original-target class pairs can be seen as an indirect
distance map between the original and different target
classes. For example, images of cat (class 3) is relatively much
closeand can bemore easily perturbed to dog (class 5) through
all types of networks and DE variants being tested.
Overall, it can be seen that some certain classes can be

more easily perturbed to another close target class. Even
Table 4 Compassion of attack effectiveness between the
proposed method with DE 0.1/0.1/0.1 and three previous works:
LSA [15], FGSM [8], and one-pixel [23], which shows that even
under more restricted condition, the proposed method can still
perform comparative effectiveness to previous works

Method Success
rate (%)

Confidence (%) Number
(percentage)
of pixels

Network

0.1/0.1/0.1 72.30 83.63 5 (0.48%) NiN

0.1/0.1/0.1 56.49 67.36 5 (0.48%) VGG

0.1/0.1/0.1 71.86 90.30 5 (0.48%) AllConv

LSA 97.89 72 33 (3.24%) NiN

LSA 97.98 77 30 (2.99%) VGG

FGSM 93.67 93 1024 (100%) NiN

FGSM 90.93 90 1024 (100%) VGG

One-pixel 72.85 75.02 1 (0.098%) NiN

One-pixel 63.53 65.25 1 (0.098%) VGG

One-pixel 68.71 79.4 1 (0.098%) AllConv

Fig. 6 Original-target class pairs. Heat maps of the number of times a
successful attack is present with the corresponding original-target
class pair on three types of networks with attacks based on
local-optimized DE 0.1/0.1/0.1. Red and blue indices indicate
respectively the original and target classes. The number from 0 to 9
indicates respectively the following classes in numerical order:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck
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Fig. 7 Heat maps of the number of times a successful attack is present
with the corresponding original-target class pair on three types of
networks with attacks based on local-optimized DE 0.5/0.1/0.1

if the original and target class might be quite similar (e.g.,
cat and dog) for both CNN and the human eyes, in prac-
tice, such a vulnerability can be still fatal. In addition,
the vulnerability might be even regarded as a guideline
for adversaries to launch targeted attack. Saying that an
adversary wishes a natural image with true label Co can
be misclassified to a specific target class Ct . According to
the distance map, he (she) finds that directly perturbing
Co to Ct is hard, but it is easy to perturb Co to a third class
Cm which has much less distance to Ct . Then, an option is
to first perturb Co to Cm and then to the final destination
Ct . For example, according to the heat map of all convolu-
tion network with 0.1/0.1/0.1 (the first graph of Fig. 6), an
adversary can perturb an image with label 0 to 9 by first
perturbing the image to class 8 then to class 9. Doing in
such a way is easier than directly perturbing from 0 to 9.
Additionally, it can also be seen that each heat map

matrix is approximately symmetric, indicating that each
class has similar number of adversarial samples which
were crafted from these classes as well as to these classes,
which is also directly suggested in Fig. 8. There are cer-
tain classes that are apparently more vulnerable since
being exploited more times than other classes, as the orig-
inal and target classes of attack. The existence of such
vulnerable classes can become a backdoor for inducing
security problems.

4.2.3 Time complexity
The time complexity of DE can be evaluated according
to the number of evaluations which is a common metric
of optimization. Specifically, the number of evaluations
is equal to the population size multiplied by the number
of generations. In this research, we set the maximum
number of generation as 100 and population size as 400;
therefore, the maximum number of evaluations is 40,000.
We observed that all DE variants reach the maximum
number of evaluations for each experiment on average.
Even so, according to the results mentioned above, the
proposed attack can produce effective solutions in such a
small number of evaluations.

4.2.4 Distribution of perturbed pixels
We plot the perturbed pixels of successful attacks to show
that their location on the images, which are shown in
Fig. 9 in the Appendix, for four types of networks and two
DE settings: 0.5/0.1/0.1 and 0.1/0.1/0.1. The attacks are
conducted on 500 CIFAR-10 and 150 ImageNet images.
Generally, we find that the perturbed pixels are more rare
at the edges while quite dense in the middle of the images.
Assuming that the main objects (e.g., the cat in the image
labeled as “cat”) mostly appear in themiddle of the images,
it is interesting to notice that the plots indicate that the
perturbations are most conducted on themain objects but
not the background. In other words, the proposed attack
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Fig. 8 Vulnerability of a specific class. Number of successful attacks (vertical axis) for a specific class acting as the original (blue) and target (red) class.
The horizontal axis indicates the index of each class which is the same as Fig. 6

always tries to alter the existing objects in the images but
not modifies the background to make the classifier ignore
the main objects, to cause the misclassification.

5 Discussion and future work
Our results show the influence of adjusting parameters
of DE to the effectiveness of attack. According to the
comparison between different DE variants, it can be seen
that a small F value can induce little reduction on the
success rate of attack but reduce about 26% distortion
needed for conducting the attack. In practice, adversaries
can choose to emphasize either success rate or distortion
by adjusting the F value. The crossovers between the coor-
dinates and RGB values of the perturbation are shown to
be not useful for generating better quality perturbation.
Such a phenomenon can be easily realized by comparing
the results between the DE that disables both crossovers
and others. This might indicate that for a specific effective
perturbation xi, its coordinate and RGB value are strongly
related. Transplanting either the isolated vulnerable coor-
dinate or RGB value of xi to another perturbation is not
helpful or even decrease the quality of latter. Furthermore,
the result might indicate that for a specific natural image,
universal vulnerable pixels or RGB values can hardly exist
in contrast to the exsitence of the universal perturbation
with respect to multiple images [13]. By vulnerable pixel
we mean a specific pixel can be vulnerable with multiple
RGB values. And vulnerable RGB value is a specific value

that keeps its vulnerability across different positions on
an image. In other words, our results show that a success
adversarial perturbation has to be conducted at a specific
locale on the image also with a specific RGB value.
We show that DE can generate high-quality solution of

perturbation by considering realistic constraints into the
fitness function. Specifically, the research evaluates the
effectiveness of using DEs for producing adversarial per-
turbation under different parameter settings. In addition,
the DEs implemented are with low number of iterations
and a relatively small set of initial candidate solutions.
Therefore, the perturbation success rates should improve
further by having either more iterations or a bigger set of
initial candidate solutions.
The ultimate goal of proposing attack against the CNN

is evaluating and understanding its vulnerability. The
CNN has been shown to have different levels of vulner-
abilities to additive perturbation created from different
types of optimization methods. The proposed attacks
show that CNN is even vulnerable to such a low cost
and low dimensional imperceptible attack even under
extremely limited conditions. The future extension can be
done by analyzing and explaining why CNN is vulnera-
ble to such various types of attacks simultaneously and
accordingly extracting possible countermeasures.

Appendix
1) Location of attack pixels on image coordinate.
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Fig. 9 The distribution of perturbed pixels of successful attacks. The graphs show the locations of perturbed pixels of successful attack on 500
CIFAR-10 images (32 × 32 resolution) and 150 ImageNet images (227 × 227 resolution). The experiment is conducted on for four types of networks:
all convolutional network (AllConv), network in network (NiN), VGG, and AlexNet BVLC, each under two DE settings: 0.5/0.1/0.1 and 0.1/0.1/0.1. The
vertical and horizontal axes of the graph respectively indicates the length and width of the image
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2) Attack examples on ImageNet.

3) Failed attack examples on ImageNet.

Fig. 10 Examples of proposed attack on ImageNet images. The perturbed pixels are highlighted by red circles. It is interesting to notice that some
perturbed pixels are almost imperceptible to the human eyes

Fig. 11 Examples of robust ImageNet images where the attacks failed
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