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Abstract

An observed image is composed of multiple components based on optical phenomena, such as light reflection and
scattering. Decomposing the observed image into individual components is an important process for various
computer vision tasks. No general approach to combine them exists although many decomposition methods exist.
This paper proposes a general approach to combine different decomposition methods in a linear algebraic manner
called multiple-weighted measurements.

Experimental results show that the proposed approach decomposes observed images into four optical components

applied to material segmentation as an application.

based on diffuse and specular reflection and single and multiple scattering. The decomposed components are
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1 Introduction

An observed image is composed of multiple components
based on optical phenomena, such as light reflection and
scattering. However, most scene analysis methods in com-
puter vision assume only simple optical phenomena. For
example, both shape-from-shading [1] and photometric
stereo [2], which obtain the shape of an object, assume
that the observed image is due to diffuse reflection. Mea-
surement of reflectance [3] often assumes only reflection
not scattering. Thus, decomposition methods are impor-
tant for various computer vision tasks because unexpected
optical components in the observed image could disturb
the scene analysis methods.

Various optical components have been targeted for
decomposition so that only an expected component is
extracted because the expected component is different
with respect to the scene analysis methods. For example,
a polarization-based method [4] is expected as remov-
ing specular reflection component. An active method
using a projector-camera system [5] supposes to separate
direct and indirect illumination components. However,
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the polarization-based method also removes single scat-
tering component and the direct illumination component
still has various components such as diffuse and specu-
lar reflection. Combining those different methods could
enable to decompose into more detailed components, but
no general approach to combine them exists.

In this paper, we propose a general approach to com-
bine different decomposition methods in a linear alge-
braic manner called multiple-weighted measurements.
With a novel perspective, a decomposition method can
be regarded as a weighted measurement, which weak-
ens some of all components with some weights derived
from the method. A weighted measurement is formulated
in a linear algebra, which makes it possible to combine
different kinds of decomposition methods.

Experimental results show that the proposed approach
decomposes observed images into four optical compo-
nents based on diffuse and specular reflection and single
and multiple scattering. The decomposed components are
applied to material segmentation as an application.

2 Related work

We begin by reviewing existing prior work. Researchers
in computer vision and computer graphics have studied
to separate, remove, or extract some optical components
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in observed images. The words they used are different
but essentially mean the same as decomposition. Target
components are different with respect to an application.

2.1 Reflection component

The first interest is in light reflection. Shafer [6] has pro-
posed the dichromatic reflectance model, in which the
color of specular reflection depends on the color of a light
source while the color of diffuse reflection depends on the
color of an object. And then, a lot of work employed the
dichromatic reflectance model to separate the diffuse and
specular reflection components [7-15].

Another effective technique to separate the reflection
components is based on polarization. Wolff and Boult [4]
utilized linear polarization to remove the specular reflec-
tion component of the observed image. Many researchers
also used linear or circular polarization [16-19]. Both
of the methods based on color and polarization can be
combined since both are in complementary relationship
[20-24].

Moreover, other cues are used to separate the diffuse
and specular reflection components. Ikeuchi and Sato [25]
used both a range and brightness images. Nishino et al.
[26] assumed a known geometry of an object to sepa-
rate view-independent, as diffuse, and view-dependent,
as specular, components. Mukaigawa et al. [27] analyzed
the reflection components based on photometric lin-
earization. Mallick et al. [28] formulated a decomposition
model based on locally spatial and spatio-temporal inter-
actions. Tao et al. [29] used line consistency based on
relationship between light field data and the dichromatic
model.

Interreflections are often targeted as other reflection
component, which is a phenomenon of multiple reflec-
tions within a scene. Seitz et al. [30] proposed a theory
of inverse light transport to separate interreflections into
each bounce component. Bai et al. [31] developed a dual-
ity theory of forward and inverse light transports and then
separated interreflections.

2.2 Scattering component

Light scattering is often regarded as a component to be
removed because it disturbs the scene analysis meth-
ods. Gilbert and Pernicka [32] removed the single scat-
tering component in water by using circular polariza-
tion. Many polarization-based methods were proposed
for removing scattering component toward clear appear-
ance in hazy atmosphere [33] and muddy water [34].
Ghosh et al. [35] separated the scattering components of
different layers in a layered object such as human skin
by using a polarization-based method. Kim et al. [36]
fused the polarization technique with a light field camera
to decompose specular reflection, single scattering, and
scattering at different layers components.

(2018) 10:13 Page 2 of 13

Narasimhan and Nayar [37, 38] analytically modeled
light scattering in atmosphere and then proposed a
method to remove scattering components of fog and haze.
Wu and Tang [39] decomposed the diffuse and specular
reflection, and subsurface scattering components based
on the model proposed by Lin and Lee [40].

Nayar et al. [5] proposed an effective method to fast
separate direct and global illumination components called
high frequency illumination. Gupta et al. [41] combined
high frequency illumination with the polarization tech-
nique to remove scattering components. Mukaigawa et al.
[42] extended high frequency illumination to separate the
single and multiple-scattering components. Fuchs et al.
[43] employed confocal imaging for descattering. Kim et al.
[44] removed the scattering components by analyzing light
field data.

2.3 Applications

Various motivations exist for decomposition methods.
Light scattering causes an unclear image in atmosphere
and water. Many methods proposed to remove the effect
of scattering and obtain a clear image [32, 33, 37, 38, 45].

The removed scattering component can be use for
reconstructing a depth map [46]. The effect of scattering
depends on the distance. Thus, the distance can be esti-
mated once the scattering component is extracted. The
scattering component plays an important role in such a
method, while that component is often regarded as an
obstacle.

Other motivation is to push the envelope in scene
analysis. The traditional scene analysis methods cannot
work properly in the real world, as mentioned in Section 1.
Since the traditional photometric stereo assumes the dif-
fuse reflection, it does not work well for glossy surface. A
solution is to separate the specular reflection component
based on the dichromatic reflectance model in prepro-
cessing [8, 9, 47]. Inoshita et al. [48] used the nature of
single scattering to obtain the shape of a translucent object
via high frequency illumination to separate the single and
multiple-scattering components [42].

A motivation in computer graphics is to improve the
appearance of rendered graphics. Ghosh et al. [35] mod-
eled the layered facial reflectance consisting of specular
reflection, single scattering, and shallow and deep sub-
surface scattering components to achieve high quality
rendering. Decomposition also plays an important role for
understanding optical phenomena. Separation of single
and multiple-scattering components enabled to analyze
light propagation in a medium [42]. Wu et al. [49] ana-
lyzed a global light transport using time-of-flight imaging
through decomposition of the direct illumination, subsur-
face scattering, and interreflections components.

Decomposition has potential to improve the perfor-
mance of those applications because the performance
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depends on the quality of decomposition. That is why the
proposed approach can be an important role in various
academic fields.

3 Multiple-weighted measurements

An intensity on an image observed by a conventional
camera is mixture of signals derived from various opti-
cal phenomena, such as light reflection and scattering.
Assuming m components in the mixture, the observed
image s € R is written as below

s = i i, (1)
i=1

where P is the number of pixels in an image and ¢; €
RP(1 < i < m) is a component image. The purpose of this
paper is to obtain each component image c¢; from multi-
ple observations. The component images can be defined
in various manners, e.g., diffuse and specular reflection,
single and multiple scattering, or direct and global illumi-
nation components. If a method which individually mea-
sures each of the components can exist, then no decom-
position method is required. However, such an individual
measurement does not exist and that is why there are a lot
of decomposition methods. Even so, the decomposition
methods do not still provide the individual measurement.
For example, a decomposition method using polarization
is expected to separate the specular reflection component
from others, but the separated specular reflection com-
ponent by polarization still includes the single scattering
component. Thus, we regard a decomposition method
as extraction of a part of the mixture named a weighted
measurement. The decomposition method weakens some
components with a weight vector w € R”

w=[wiwy - wp]' . (2)

The observed image s can be expressed by using the
weight vector w as follows:

m
s = Z wic;. (3)
i=1

The weighted measurement is formulated in matrix form
as follow:

s = Cw, (4)

where C = [c1¢y - - - €] € RE*™ aga component matrix.
Given n(> m) different weighted measurements, an

observed image §/(1 < j < n) by each of the measure-

ments with a weight vector w/ is formulated as below:

¢ =Cw. (5)

All the measurements can be expressed in matrix form as
below:

S=CWwW, (6)
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where § = [sls2 . -s”]] € RP*" an observation matrix,

and W = [w1 w?... W' e RMX1 4 weight matrix, that is
called multiple-weighted measurements.

Decomposition which this paper aims at is to obtain
the component matrix C. When the shape of the weight
matrix is square, # = m, and the rank of the matrix is
full, rank(W) = m, then the component matrix C can be
computed by

cC=sw (7)

When the shape is horizontally long rectangle, n > m, and
rank(W) = m, then the component matrix C is estimated
in a least squares manner as follows:

C=sw+=5§ (WT W>_1 wT, ®)

where W is the pseudo inverse matrix of W. Finally, the
decomposition is performed in a linear algebraic manner
given a set of weighted measurements.

Additionally, the rank of the weight matrix reveals feasi-
bility of the decomposition in advance before performing
measurements. The decomposition is feasible only if the
rank is full, rank(W) = m. Otherwise, other measurement
methods are required so that the rank is full. According to
the nature of least squares, the larger number of combi-
nations is the more stable solution is estimated even if the
rank is full.

4 Decomposition of reflection and scattering
components

In the previous section, we explained the theory of
multiple-weighted measurements. A key of the proposed
approach is to design the weight matrix W so that the
decomposition becomes feasible. However, we cannot
arbitrarily design the weight matrix because a weight vec-
tor is derived from a measurement method. This section
describes how to build the weight matrix as an implemen-
tation.

4.1 Light reflection and scattering components

An observed intensity at a point is a mixture of various
optical components. Figure 1a illustrates light reflection
and scattering phenomena at the point. Light reflection is
often classified into two components; diffuse and specular
reflection. Diffuse reflection arises because of a micro-
facet structure on object surface. On the other hand,
specular reflection arises at an interface between the air
and the object surface (Fig. 1b).

Light scattering is also classified into two components;
single and multiple scattering, according to researches
in computer vision [42, 50] and physics [51, 52]. Single
scattering is caused by one-bounce collision with a par-
ticle, or particle aggregation, inside an object, which is
often seen in optically thin media (Fig. 1c). A well-known
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4 Multiple scattering
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Fig. 1 Light reflection and scattering. a Reflection and scattering phenomena at a point. b Reflection is classified into two components; diffuse and

specular reflection. € Scattering is also classified into two components; single and multiple scattering. d Interreflections and multiple-scattering
phenomena are similarly based on multi-bounce collisions
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nature of single scattering is that an intensity of single
scattering exponentially decays along its light path. On the
other hand, multiple scattering is a phenomenon of multi-
bounce collisions, which is often seen in optically thick
media (Fig. 1c).

In this paper, we aim at decomposing observed images
into the above four optical components; diffuse and
specular reflection, and single and multiple scattering.
Interreflections are not explicitly modeled in this imple-
mentation. Since interreflections and multiple-scattering
phenomena are similarly based on multi-bounce collisions
with surfaces and inside particles, respectively (Fig. 1d),
both of the components are included in the multiple-
scattering component.

4.2 Definition of measurement weights

Now, we define weight vectors w/ to the four components
as previously described. We consider four distinct weight
elements which correspond to the four components, i.e.,
diffuse reflection wpg, specular reflection wgg, single scat-
tering wss, and multiple scattering wis. By definition,
each weight is in a range of 0 < w; < 1. Therefore, a
weight vector w € R* is explained as

w = [wpR Wsg Wss Wms] " - )

In the following, we describe separation methods and
their corresponding weight vectors. Note that the weight

vectors are theoretically determined from the methodol-
ogy, instruments, and experimental setup.

4.2.1 Normal observation

An image taken under an ordinary illumination, e.g.,
the uniform white illumination, condition contains all of
the four components. We treat this observation as the
one that contains all the components equally without
reduction of anything. Therefore, the weight vector is
defined as

WML —11111]7. (10)

Figure 2a shows an image taken under white illumination
projected by a projector. In the scene, there are a marble
stone, two billiard balls, and three coins.

4.2.2 Circular polarization

Techniques based on circular polarization can separate
specular reflection [4, 19] and single scattering [32, 34]
from other components. The nature of circular polar-
ization is that right-handed (or left-handed) circularly
polarized light cannot transmit through a left-handed (or
right-handed) circular polarizer. Since one-bounce colli-
sion reverses the handedness of the polarized light, specu-
lar reflection and single scattering, which are derived from
one-bounce collision with a surface and an inside parti-
cle, respectively, change the handedness of the polarized
incident light. On the other hand, multi-bounce collisions,
such as diffuse reflection and multiple scattering, turn
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(a) Normal observation

(e) Direct by sweeping HFI

(g) Direct by HFI with CP

high frequency illumination with circular polarization

Fig. 2 Observed images by several separation methods. a Under an ordinary illumination, b circular polarization, e-d direct and global components
by high frequency illumination, e—f direct and global components by sweeping high frequency illumination, g-h direct and global components by

(b) Circular polarization (CP)

(d) Global by HFI

(f) Global by sweeping HFI

(h) Global by HFI with CP

polarized light into unpolarized one. Therefore, putting
a same-handed circular polarizer in front of both a light
source and a camera can remove specular reflection and
single scattering.

However, in practice, a polarizer does not have a per-
fect capability for light transmission and shielding but the
single transmittance t; and the crossed transmittance .
The single transmittance £ is the ratio of the power of light

passed through the polarizer to that of the incident unpo-
larized light. The crossed transmittance ¢, is the ratio of
the power of light passed through the one-handed polar-
izer to that of the incident opposite-handed polarized
light. Thus, the weight vector is defined as

.
w<P = [£2 tt. tit £2) (11)



Takatani et al. IPSJ Transactions on Computer Vision and Applications

Figure 2b shows an observed image by using a circular
polarization technique in the same scene. We simply put
a circular polarizer in front of the projector and the same-
handed circular polarizer in front of the camera. As we
can see, the coins cannot almost be seen and the highlights
on the balls was removed.

4.2.3 High frequency illumination

High frequency illumination, proposed by [5], can sepa-
rate direct and global illumination components in a scene
from observed images under spatially high frequent pat-
tern illuminations, such as a checkerboard pattern. The
direct illumination component includes directly reflected
light on surfaces in the scene and the global one includes
others, such as in-directly reflected light, scattered light,
and transmitted light. For the details, we refer the reader
to [5]. In this instance, the direct and global illumination
components correspond to reflection and scattering ones,
respectively. Thus, the weight vectors for the direct and
global illumination components are defined as

{nglz[lloo]T, 12)

wotl =[0011]".

Separated direct and global illumination components in
the scene are shown in Fig. 2¢, d, respectively. Since the
marble stone is a translucent object, the intensity on the
marble stone region is mostly included in the global com-
ponent. The billiard balls are also translucent to some
extend, so the texture on the ball, e.g., the number 3, is
blurred in the global component while that is clear in the
direct one. We can see specular interreflections on the
white ball, which is reflected on the ball again after being
reflected on the coins.

4.2.4 Sweeping high frequency illumination

Mukaigawa et al. [42] have proposed sweeping high
frequency illumination, which can separate single and
multiple-scattering components in a scene by projecting
spatially high frequent stripe patterns, inspired by high
frequency illumination [5]. The separated direct com-
ponent includes not only light reflection but also single
scattering, while the global one includes the others, such
as multiple scattering and intereflections. Therefore, the
weight vectors for the direct and global components are
defined as

{wSDHFlz[ulo]T,

1
waHl =[0001]". (13)

Separated direct and global components in the scene are
shown in Fig. 2e, f, respectively. Comparing with that in
the direct component of high frequency illumination (c),
the marble stone region in the direct component (e)
is brighter because the single scattering component is
included.
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4.2.5 New combination: high frequency illumination with
circular polarization

A combination of several separation methods let us define
another weight vector. For example, we combine the
high frequency illumination technique with the circu-
lar polarization technique. It is easily implemented with
the projector-camera system, which is used to implement
the high frequency illumination, and a pair of the same-
handed circular polarizers. The combination can separate
direct and global components, similar to the results of
high frequency illumination, but the specular reflection
and single scattering components are removed in both of
the components. In this instance, each element of a new
weight vector is the product of corresponding elements of
the weight vectors; Egs. (11) and (12). Thus, the weight
vectors are defined as

T
WE[HCP = WE[FI owl = [tsz st 0 O] )
HFICP __ . HFI CP __ 21T
wg =wg ow _[OOtstcts] s

where o is the Hadamard product operator. Note that the
new weight vectors, Eq. (14), are linearly independent of
those of the circular polarization, Eq. (11), and the high
frequency illumination, Eq. (12). This is a way that we can
obtain a new weighted measurement by simply combining
several separation methods.

Figure 2g, h shows separated direct and global compo-
nents, respectively. As we can see, the specular reflection
component is removed in the direct component (g). Actu-
ally, there exists specular interreflections in the global
component of high frequency illumination (d), e.g., coins.
However, in the global component (h), those are perfectly
removed thanks to the effect of circular polarization.

(14)

4.3 Weight matrix

We employ the five weighted measurements, as described
above, to implement the multiple-weighted measure-
ments for decomposition into four components; diffuse
and specular reflection, and single and multiple scatter-
ing. In this instance, the weight matrix W € R**® consists
of the eight weight vectors, as

W = [SNMLWNMLSCPWCPSHFI w]SFISHFI w]éIFISSHFI w]S)HFI

’

SS]—[FIw%HFISHFICPWBFICPSHFICPWIC—;[FICP]

(15)

where ¢ is the global scales for each weighted measure-
ment. The scales are decided by an experimental setup.
In practice, the scales are normalized to one because the
experimental setup is not changed while performing all
of the weighted measurements. The eight weight vectors
do not have to be linearly independent to each other as
long as the weights matrix W has a full-rank. For example,
[wNML wl]S[FI WSH] consists of linearly dependent columns
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because wNML  — WB[FI + w]ém. However, all of them

can be combined together in the weight matrix W for
a stable computation. Designing a weight matrix can be
done ahead before measuring and computing, that is, the
rank analysis of the designed weight matrix let us know
whether decomposition is feasible, or not, in advance. In
this instance, the weight matrix W has full-rank because
ts > t. for a general polarizer. Therefore, the decomposi-
tion is a well-posed problem.

In fact, the rank of the weight matrix W can be sys-
tematically analyzed in this case. Let us consider the
product WW T e R**4 Its determinant has a closed-form
expression as

det (WWT> =2 (t — t,)* (156* + 24621, (t, — t;) + 16).
(16)

Therefore, with the condition #; > t, > 0, the determi-
nant becomes positive; the weight matrix W is full-rank.
In practice, the conditioning of the weight matrix W is
more important for the stability of the pseudo inverse
WT. One of the ways to evaluate the conditioning is to
assess the ratio between the largest and smallest singular
values, 0max and omin, of the weight matrix W, which can
be numerically computed as

Omax

k(W) =

(17)

Omin

k(W) is often called the condition number of W.
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5 Experiments

First, we verify a result of the decomposition by the pro-
posed approach. In the verification, we use a simple scene
where there are some typical materials in Section 5.1.
Second, we analyze the repeatability of the decomposition
and the effect of each of the weighted measurements in
Section 5.2. Finally, we perform the decomposition in vari-
ous complex scenes and discuss the decomposition results
in Section 5.3.

We begin by describing the experimental setup in this
section. In all of the experiments performed in this paper,
we use a 3M MProl60 projector as a light source and a
Point Grey Research Chameleon color camera as a record-
ing device, as shown in Fig. 3a. To employ the circular
polarization technique, we used two circular polarizers,
Kenko SQ Circular-PL with £, = 0.399 and t, = 0.0005
as the product-specific values. In measurements of the
polarization approach, we put them in front of the pro-
jector and the camera, as shown in Fig. 3b. For the high
frequency illumination, we project several checkerboard
patterns whose block size is a 3 x 3 pixels square, as shown
in Fig. 3c. Figure 3d illustrates a dotted line pattern for the
sweeping high frequency illumination, which also consists
of only vertically, or horizontally, repeated 3 x 3 pixels
squares.

In the experiments in this paper, we employ all of
the weighted measurements, described in Section 4.2, to
obtain the observation matrix §. Since the weight matrix
W is defined as Eq. (15), we can compute the component

\ EE Camera
1
S

£

Projector

_Polarizer

B\ /o

illumination

Fig. 3 Experimental setup. a Locations of the camera and the projector. b Circular polarizers placed in front of both of the camera and the projector.
¢ A part of a checkerboard pattern used for high frequency illumination. d A part of a dotted line pattern used for sweeping high frequency

(d)
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matrix C by Eq. (8), that is, we can obtain the decom-
position into diffuse and specular reflection, and single
and multiple-scattering components. Note that all of the
weighted measurements are done under the same exper-
imental setup. Thus, we assume all of the global scales
in Eq. (15) have been normalized.

5.1 Verification

To verify the decomposition by the proposed approach,
we use a simple and well-designed scene, as shown in
Fig. 4a. The target scene consists of four typical materials;
a ceramic board, a duralumin plate, a block of milky epoxy
resin, and a cylinder of polyoxymethylene (POM) resin.
On a surface of matte ceramics, light tends to be evenly
diffused for all angles because of its microstructure. Dura-
lumin, a type of aluminum alloys, strongly reflects light
on its surface; therefore, a specularity becomes dominant.
Both of the resins are translucent media, but they have
different translucencies, as shown in Fig. 4b. The block of
milky epoxy resin consists of an optically thin medium;
thus, we can observe a light ray in the medium, which
is a feature of single scattering and depends on the inci-
dent light angle. On the other hand, in a optically thick
medium, such as the cylinder of POM resin, the observed
light does not depend on the incident light angle but
evenly spreads because of multiple scattering.

We observed the scene with the five weighted mea-
surements and then decomposed them into the four opti-
cal components by computing Eq. (8). The decomposed
result is shown in Fig. 4c—f, which are (c) diffuse reflec-
tion, (d) specular reflection, (e) single scattering, and
(f) multiple-scattering components. To analyze the result,
we computed the averages of intensities in each material
region on each optical component image and summarized
the proportion of the averages in Fig. 4g. As similar to
our expectation, the dominant optical components varied
across the materials; diffuse reflection became dominant
in the ceramic board (78.7%), specular reflection in the
duralumin plate (68.1%), single scattering in the block of
milky epoxy resin (41.0%), and multiple scattering in the
cylinder of POM (50.6%). Consequently, the verification
shows that the decomposition by the proposed approach
leads a significant decomposition of observations into the
four optical components; diffuse and specular reflection,
and single and multiple scattering, while it is difficult
to quantitatively analyze its performance. Note that the
decomposition cannot be achieved by applying any of the
existing separation methods.

5.2 Analysis of decomposition results

We analyze the decomposition with two different per-
spectives. First, we show the repeatability of the decom-
position. We take each weighted measurement five times
under the same experimental setup, and then compare
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decomposition results. Each of the decomposition results
is evaluated in peak signal-to-noise ratio (PSNR) between
the others. The comparison resulted in 42.1 dB in PSNR
on average with the standard deviation of 1.36 dB. The
average (and the standard deviation) of PSNRs for diffuse
and specular reflection, and single and multiple-scattering
components are 42.1(1.58), 42.0(1.42), 42.2(1.15), and
42.0(1.24) dB, respectively. Consequently, it shows that
the repeatability of the decomposition by the proposed
approach is quite high.

Second, we evaluate the effect of each of the weighted
measurements by comparing the decomposition result
with all of them and that without one of them. As shown
in Table 1, the comparison results say that disusing one
of the weighted measurements leads to a large change in
a decomposition result. This is because the total number
of weight vectors is few, thus W is significantly changed.
For example, when the circular polarization is disused,
the PSNRs for diffuse and specular reflection, and single
scattering components become the lowest. That is, the cir-
cular polarization is important for the decomposition. On
the other hand, the PSNRs when disusing the high fre-
quency illumination are relatively high. This is because of
the redundancy of the multiple-weighted measurements.

5.3 Decomposition in complex scenes

We apply the decomposition to more realistic and com-
plex scenes, where there are various everyday objects, as
shown in Fig. 5. The scene (a) consists of plastic cards,
coins, wax candles, and a plastic cup of soap water; the
scene (b) consists of a mechanical pencil, a leather pen
case, an eraser, an aluminum ruler, and a sticky-paper;
and the scene (c) consists of coins, phenolic billiard balls,
and a marble stone. Figure 5¢ shows the decomposed
results; diffuse and specular reflection, and single and
multiple-scattering components, respectively, from left to
right.

In the diffuse reflection, single scattering and multiple-
scattering components, an intensity is observed to some
extent on all the materials except for metals, such as the
coins and the ruler. This is because of subsurface scat-
tering, as mentioned in [53, 54]. Almost all real-world
materials are translucent to some extent except for met-
als. In the specular reflection component, an intensity is
observed not only on metal materials but also on other
materials because specular reflection arises on a smooth
surface, such as the surface of the billiard balls. The
scattering media, such as the wax candles, the eraser,
and the marble stone, show strong intensities in the sin-
gle and multiple-scattering components. Optically thin
media, such as the soap water, the eraser, and the marble
stone, show relatively stronger intensities than the other
materials in the single scattering component. Moreover,
the intensity in the single-scattering component seems to
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Fig. 4 Verification. a The target scene consists of four materials; a ceramic board, a duralumin plate, a block of milky epoxy resin, and a cylinder of
polyoxymethylen (POM). b The resins have different scattering properties. The observations are decomposed into four components; ¢ diffuse and
d specular reflection, and e single and f multiple-scattering components. g The proportion of the averaged intensities in each material region
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Table 1 Evaluation of the effect of each of the weighted
measurements

Removed Diffuse Specular Single Multiple
measurement reflection  reflection  scattering  scattering
Normal observation ~ 25.5 26.7 24.1 268
Circular polarization ~ 25.2 264 24.1 266

High frequency 263 276 252 26.1
illumination

Sweeping high 253 264 246 244
frequency illumination

High frequency 26.8 269 24.1 26.5

illumination with
circular polarization

We performed the decomposition without one of the weighted measurements and
compared the result with that with all of them in PSNR[dB]

depend on the shape of an object, e.g., the edges of the
wax candles have stronger intensities than other parts.
Note that we do not distinguish interreflections from mul-
tiple scattering in this paper, as mentioned in Section 4.1,
so that interreflections in the scenes are included in the
multiple-scattering component.

6 Application: raw material segmentation

The decomposition enables a scene analysis in detail. In
this paper, a raw material means unpainted and individ-
ually consisting of a single material. The goal of the raw

(2018) 10:13 Page 10 of 13

material segmentation, similar to [55], where discrimina-
tive illuminations are used for classifying materials, is to
classify materials in an image based on the opacity and
translucency. Since the proportion of optical components
carries significant information about the material prop-
erty as we have seen in Fig. 4g. To show the potential of the
decomposition, we perform the decomposition in a scene,
as shown in Fig. 6a, where there are 19 objects with 13 dif-
ferent materials, and then apply a segmentation based on
its decomposition result.

We show the decomposition of observations into the
four optical components in Fig. 6b—e, which are diffuse
and specular reflection, and single and multiple-scattering
components, respectively. From the decomposition result,
we form a normalized 4D feature vector, consisting of
the four components, pixel by pixel. And then, we sim-
ply perform a conventional k-means clustering method as
segmentation to assess the effectiveness of the decompo-
sition. The segmentation results are shown in Fig. 6f with
a varying parameter k(2 < k < 13). As a visualization, the
same color regions belong to the same segment.

When k = 2, the segmentation result clearly shows a
distinction between opaque and translucent materials; the
blue and green regions correspond to opaque and translu-
cent materials, respectively. When k = 3, material 5 (dura-
lumin) is segmented as another isolated region because
of its unique material property, i.e., specular reflection is
strongly seen on material 5 because duralmin is a type of

Multiple scattering

Single scattering + Inter-reflections

d

Fig. 5 Decomposition results in complex scenes. a—c the target scenes. d the observations in each of the scenes are decomposed into diffuse and
specular reflection, and single and multiple-scattering components
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(f) Segmentation results

Fig. 6 Raw material segmentation. a The target scene has 19 objects with 13 different raw materials. b—e Decomposed components by the
proposed method; diffuse and specular reflection, and single and multiple reflection, respectively. f Segmented result by k-means clustering with

aluminum alloys. When k = 4, material 8 (milky epoxy
resin) is segmented as a blue-sky region because of its
strong single scattering component. When k = 5, materi-
als 13 and 19 (polypropylene resins, PP) are segmented as
a different region. A PP resin is a translucent medium with
an optically thinner property than the other translucent
media except for the milky epoxy resin. In the segmen-
tation result with k = 6, material 4 (wood) and material
14 (cowhide) are separately segmented because both of
them are opaquer than the other materials segmented as
the blue regions. When k = 7, material 7 (ceramic) and
17 (paper) are segmented as a new isolated region because
of the fact that those materials show stronger scattering
components comparing with the other opaque materi-
als. When k = 8, material 7 (ceramic) is separated as
another region. When k = 9, materials 3, 15 (acrylic), and
10 (polyvinyl chloride resin) are mainly separated. How-
ever, materials 16, 18 (polyethylene resins, PE), 11, and 12
(candles) are partially separated even though they consist
of one material. This is because of the colors and the angle
of illumination. When k = 10, material 2 (rubber) is sep-
arated from material 1 (paper). When k = 11,12, some
regions on the same materials are separated because of the
angle of illumination. The result at k = 13 has only 12
segments which are the same as k = 12. Consequently,

the translucent materials are classified into six types and
the opaque materials into six. This application shows that
it is reasonable to classify various opaque and translucent
materials based on the decomposition by the proposed
approach.

Additionally, we compare the segmentation result with
a conventional baseline one. Assuming that only RGB
channels are available for segmentation, we performed
k-means clustering with k = 7 in the RGB space, which
resulted in Fig. 7a. Apparently, it is difficult to sep-
arate segments based on material properties by using
a color-based segmentation approach. Comparing with
that, the segmentation result by our approach shows a
segmentation based on material properties, as shown
in Fig. 7b.

7 Conclusion

In this paper, we proposed the general approach
called multiple-weighted measurements, which enables
to uniformly combine any kind of separation meth-
ods, such as color-based, polarization-based, and active
projection-based, to finely decompose observations. As
an implementation, we defined the weight vector of five
different weighted measurements and combined them
in the proposed approach to decompose observations
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Fig. 7 Comparison of segmentation results. a Segmented result in the RGB space. b Segmented result based on the decomposition

into four optical component; diffuse and specular reflec-
tion, and single and multiple-scattering components.
The experimental verification showed that the decom-
position was reasonable because the proportions of
decomposed components were similar to the expecta-
tion based on physical property for each material region
on the image. In the experiments, we performed the
decomposition in the various complex scenes. We also
showed the possibility of its application for raw material
segmentation. The decomposition enables a novel seg-
mentation based on the opacity and translucency of mate-
rials unlike a conventional segmentation based on the
colors.

There are a few limitations in the proposed approach.
First, a shadow is not explicitly handled in the linear for-
mulation (Eq. (1)). This may yield an unmodeled error in
the shadow region as computing the decomposition. Sec-
ond, unmodeled components are erroneously included in
some of the four components. There exist other optical
phenomena, such as refraction and fluorescence, although
only the four components has been introduced in the
paper. For example, refracted light on the plastic cup of
soap water in the target scene (a) in Fig. 5 can be seen in
the diffuse component. Third, since it is based on a com-
bination of multiple separation methods, a scene has to
be static and the total processing time is a summation of
ones for which individual separation methods take. The
first limitation is a challenging problem to be solved but
worthy to be considered in order to expand the applica-
bility of the decomposition. In order to resolve the second
limitation, a method which can separate the other compo-
nents must be added to the proposed approach. The third
limitation cannot essentially be resolved, but the total pro-
cessing time can be reduced if the target components are
confined. As shown in Table 1, the implemented com-
bination has a redundancy for the decomposition. That
is, there must exist the optical combination correspond-
ing to a target component. If the number of combined
measurements is reduced, the total processing time also
reduces.
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