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Abstract

Motion information can be important for detecting objects, but it has been used less for pedestrian detection,

particularly with deep-learning-based methods. We propose a method that uses deep motion features as well as deep
still-image features, following the success of two-stream convolutional networks, each of which are trained separately
for spatial and temporal streams. To extract motion clues for detection differentiated from other background motions,
the temporal stream takes as input the difference in frames that are weakly stabilized by optical flow. To make the
networks applicable to bounding-box-level detection, the mid-level features are concatenated and combined with a
sliding-window detector. We also introduce transfer learning from multiple sources in the two-stream networks,
which can transfer still image and motion features from ImageNet and an action recognition dataset respectively, to
overcome the insufficiency of training data for convolutional neural networks in pedestrian datasets. We conducted an
evaluation on two popular large-scale pedestrian benchmarks, namely the Caltech Pedestrian Detection Benchmark
and Daimler Mono Pedestrian Detection Benchmark. We observed 10% improvement compared to the same method

but without motion features.
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1 Introduction

Pedestrian detection is a long-standing challenge in the
image recognition field, and its applications are diverse,
e.g., in surveillance, traffic security, automatic driving,
robotics, and human-computer interaction. However,
even state-of-the-art detectors still miss many pedes-
trians who appear small, vague, or non-salient because
appearance features cannot be helpful to resolve such
hard instances. Contrarily, one of the important factors
in this detection is to exploit motion information. Human
brains process motion in the early stage in the pipeline
of the visual cortices to enable humans to notice and
react to moving objects quickly [1]. Ambiguous objects in
still images that are not recognizable to humans can be
sometimes easily distinguished when motion is available.
Following this idea, several studies have shown that detec-
tion performance can be improved by combining motion
features with appearance features [2—-7]. However, perfor-
mance gain by motion features has been slight, and how
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to incorporate motion clues into detection to achieve the
best performance is still under discussion.

Despite the importance of motion information, they
are less exploited with current state-of-the-art pedes-
trian detection methods. According to the benchmark
Caltech Pedestrian [8], incorporated motion features still
rely only on hand-crafted features such as histograms of
oriented gradients of optical flow (HOF [3, 6]), or tempo-
ral differences of weakly stabilized frames (SDt [7]), which
is relatively more popular as it ignores non-informative
motions. The key insights of these hand-crafted features
are that (1) contours of moving objects in fine scale is
important for detection, and (2) informative motions have
to be extracted by factoring out unnecessary motions
(such as camera-centric motions).

Deep motion features, on the other hand, have
been actively explored in activity recognition [9-14].
Though deep convolutional neural networks (ConvNets)
over spatio-temporal space had not been competi-
tive against hand-crafted features with sophisticated
encodings and classifiers, recently proposed two-stream
ConvNets [15] have achieved remarkable progress. Two-
stream ConvNets are inspired by two (ventral and dorsal)
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streams in the human brain, and capture spatial and opti-
cal flow features in separate ConvNets. Spatial features
from ConvNets have been extensively used in pedes-
trian detection, and deep methods [16—18] have produced
state-of-the-art results. Thus, a two-stream framework
to combine spatial and temporal features should enable
significant and natural improvements over these methods.

We present a deep learning method for pedestrian
detection that can exploit both spatial and temporal infor-
mation with two-stream ConvNets. Based on the findings
in hand-crafted motion features, we demonstrate that
deep learning over SDt [7] efficiently models the contours
of moving objects in fine scale without unwanted motion
edges. Our deep motion features are more discrimina-
tive than hand-crafted or raw features, as it has been the
case for still-image features. The presented ConvNets are
novel in the following two aspects. First, SDt, an effective
motion feature for pedestrian detection, is used as inputs
for temporal ConvNets instead of raw optical flow, as it
factors out camera- and object-centric motions that are
prominent in videos from car-mounted cameras. Second,
we adopt concatenation of mid-level feature maps instead
of late fusion of class scores [15], which is similarly done
in channel-feature-based methods [16, 19, 20]; thus, our
networks can be applied to arbitrary input image sizes and
enable sliding-window detection rather than video-level
classification. Our detector is implemented on the basis
of the convolutional channel feature detector [16], which
provides a simple yet powerful baseline for deep pedes-
trian detection methods. The resulting architecture can
effectively learn features from multiple datasets.

Our contributions are four-fold. First, we propose
the first method that utilizes deep motion feature for
pedestrian detection. Second, we design a two-stream
network structure that enables sliding-window detection.
Third, we show that an activity recognition dataset [21]
can improve pedestrian detection through transfer learn-
ing. Finally, our experimental results reveal how deep
motion features can be effective by benchmarking in open
datasets and via intensive analysis. The proposed method
with deep motion features achieved 10% reduction of miss
rate from a deep detector only with still-image feature
[16] in popular Caltech Pedestrian and DaimlerMono,
and this is a larger improvement than directly
incorporating SDt [7].

2 Related work

Pedestrian detection has been one of the hottest topics
in computer vision over the last decade, and over 1000
papers have been published on this topic [20]. Pedestrian
detection has been mainly addressed with the so-called
sliding-window detectors, which classify each window
into pedestrian or others. The progress in these meth-
ods can be roughly categorized into improvements of
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features and classifiers. Features have been improved both
by hand-crafted design and feature learning.

Hand-crafted features Exploring more effective features
has been one of the central interests in object recogni-
tion. The early successful features are Haar-like [22] and
Histograms of Oriented Gradients (HOG) [23] and fol-
lowed by their many variants. The ideas of feature design
are the use of gradients [23, 24], edges [25], robust color
descriptors [6], multi-resolution [19], covariance and co-
occurrence features [26, 27], and speed increase with
binary features [28]. Modern detection methods often
use multiple features in combination. Some papers found
effective sets of features that work better together [29],
and others focused on the methods for aggregating differ-
ent types of features and channels. These excellent hand-
crafted features maintain the competitive performance in
pedestrian benchmarks [30] even after the appearance of
deep learning [20].

Deep learning Deep learnings are data-driven methods
for learning feature hierarchies. They are now important
in pedestrian detection as well as generic object classi-
fication [31-33], detection [34], and semantic segmen-
tation [35]. Historically, researchers have applied simple
ConvNets [36], unsupervised ConvNets [37], or specially
designed networks [38—41] to pedestrian detection. How-
ever, they did not significantly outperform the state-of-
the-art detectors with hand-crafted features. Hosang et al.
[42] enlightened the strength of ConvNets by introduc-
ing transfer learning; namely, the networks become more
powerful when they are pre-trained on the large Ima-
geNet rather than trained only on pedestrian datasets.
Several recent studies made remarkable progress by using
ConvNets in combination with decision forests [16],
transfer and multi-task learning in other tasks [17], and
part mining [18].

Classifiers Classifiers are the other main component of
pedestrian detectors. Beyond basic linear support vector
machines (linear SVMs) [43] and AdaBoost [44], many
types of classifiers have been developed and introduced
into detectors. Boosted forests, which can be interpreted
as both a forest version of AdaBoost decision stumps and
a boosting version of random forests [45], have recently
been preferred in pedestrian detection [16, 19]. Structured
classifiers such as partial area-under-curve optimization
[46-48] and deformable part models (DPMs) with latent
SVMs [49, 50] are also useful. Since DPMs can be inter-
preted as a variant of ConvNets [51], their advantage is
inherent in ConvNets. Faster computation by cascading
[52, 53] is also possible over boosted forest classifiers.
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Motion features Use of motion features is another
important aspect in pedestrian detection, and should be
able to boost the performance of detectors. Considering
applications to video-based tasks such as surveillance or
automatic vehicles, use of motion is natural for pedestrian
detection. Several studies involved motion in detection
with optical flow [3, 6, 54], multi-frame features [5], tem-
poral differencing [2, 55], and detection by tracking [4].
The most popular among the scoreboard leaders in the
benchmark [8] is SDt [7], which can remove camera-
centric and object-centric motions by warping the frames
with coarse optical flow and detect informative deforma-
tion of objects in fine scale by time differencing.

There are more hand-crafted and deep motion features
in other video-based tasks, such as video segmentation,
activity detection, motion analysis, and event detection.
Recent perspectives of the evolution of deep motion
features with respect to hand-crafted features can be
found, e.g., [56, 57]. In short, rather than using ConvNets
over spatio-temporal space, as in multi-frame ConvNets
[12, 14], it is more successful to use separate ConvNets for
spatial and temporal (optical flow) features [15]. Similar
two-stream architectures have been introduced in more
recent studies [56—59].

Generic object detection in videos also draws attention
recently, as the largest competition in image recogni-
tion (ILSVRC2015 [60]) has started a competition of this
task. Currently, most methods in the competition adopt
single-frame detection and tracking of detected objects,
rather than utilizing motion features. Nevertheless, novel
techniques are introduced in this dataset, including flow-
based feature propagation [61, 62] and joint tracking [63];
however, they are for minimizing motion to maintain tem-
poral consistency of object classes, but not for exploiting
motion as a clue by itself. In other challenging domains
such as bird surveillance, recurrent-net-based detectors
have been examined [64, 65], but recurrent nets can be
difficult to train [66] especially in complex environments
such as road scenes. Overall, these methods are not clearly
effective in pedestrian detection.

Considering these discussion on pedestrian detection
and deep motion features, there is room to improve
pedestrian detection by using deeply learned motion
feature. Rather than inputting optical flow stacks into
the temporal stream, we use SDt [7], as it can factor
out non-informative motion. This is crucial, as many
videos captured using car-mounted cameras contain ego-
motions from the car, and removing such motions to
extract important flow is necessary. In this paper, we dis-
cuss the strength of detection by fusing spatial channel
features and stabilized motion features both learned by
deep neural nets. To the best of our knowledge, this paper
proposes the first detection method that uses motion with
ConvNets.
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3 Motivation from biology

Our motivation of exploiting motion features in pedes-
trian detection and designing two-stream network archi-
tecture is from insights from neuroscience and visual
psychology on how human vision processes motion infor-
mation. From the structural viewpoint, visual cortices
have two main streams for recognition and motion,
namely ventral stream and dorsal stream [67]. This
inspired two-stream structure in artificial neural net-
works for video tasks [15, 68], including ours. While
the processing pipeline of motion is hierarchical, it is
worth noting emphasis of temporal changes are per-
formed at early stages by cells sensitive to temporal
changes [1].

From the functional viewpoint, perception of motion
is related to recognition of objects even when appear-
ance features of objects are unavailable. An example
is biological motion [69], which is a phenomenon that
motion patterns showed via individually meaningless sig-
nals (i.g., point light) can be perceived as human loco-
motion or gestures. Based on these insights, we design
two-stream pedestrian detection method aided by motion
information.

4 Two-stream ConvNets for pedestrian detection
The overview of our method is shown in Fig. 1. It con-
sists of a two-stream ConvNet that takes the current
frame for spatial ConvNets, and the temporal difference
of weakly stabilized frames via coarse optical flow for tem-
poral ConvNets. The outputs from the two streams are
concatenated and compose feature maps, and the boosted
forests perform sliding-window detection over them.

4.1 Two-stream convolutional features

Our pipeline incorporates motion information via two-stream
convolutional features (Fig. 1b, which is a two-stream
network architecture [15] adopted in sliding-window
detection. The first stream for spatial features follows
the framework of convolutional channel features (CCF)
[16] as a baseline. It consists of the lower part of
VGGNet-16 [32], which includes three convolutional lay-
ers and three max-pooling layers, and is pre-trained on
the ILSVRC2012 dataset [60]. According to Yang et al.
[16], VGGNet-16 produces better features for pedestrian
detection than AlexNet [31] or GoogLeNet [33], suppos-
edly because deeper networks are difficult to transfer to
other tasks.

For the second stream for temporal features, we
build convolutional features specialized in motion
feature extraction. While ImageNet-pretrained features
generalized well to detection tasks [16, 34], it does not
work for motion handling because they are derived from
the still-image classification task. Therefore, we train the
ConvNets over difference images collected from video
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Fig. 1 Overview of our method. First we pre-process video frames by coarse alignment and temporal differencing for effective motion description
(@). Next, we input raw current frames and temporal differences into convolutional layers to extract spatio-temporal features (b). Finally boosted
forests perform sliding-window detection over the convolutional feature map (c)

datasets. The training is necessary, if we want to work on
temporal differences, because statistical distribution of
difference images has different nature from that of still
images. We collect difference images of UCF-101 [21],
a large activity recognition dataset with 13,320 video
clips categorized into 101 classes, and we train AlexNet
on them. AlexNet is chosen because of its trainability.
It has less layers than VGGNet-16 or GoogleNet and
therefore is easy to train on datasets smaller than Ima-
geNet such as UCF-101. For feature extraction, we used
the second convolutional layer in AlexNet, which makes
256-dimensional feature maps, the same dimension as
that of the spatial stream. We refer to this trained AlexNet
as UCFAlex.

There are several options for the second CovNets. For
instance, one may think that we can reuse VGGNet-16 of
the first stream, if we want to input the previous frame
or weakly aligned previous frame to the temporal stream.
However, such an approach can be weak because statisti-
cal distribution of difference images has different nature
from that of still images. We see the performance gain by
our motion ConvNet and CovNets in the Section 5.

For training of the temporal stream, we use split01 of
UCE-101. Specifically, we use the first group (divided
according to the source videos of each clip) for validation
and the remaining 24 groups for training. We choose
stochastic gradient descent [70], the most common
ConvNet solver for training in the same setting as those
by Simonyan and Zisserman [15], except that we initial-
ize network parameters with those of AlexNet trained on
ILSVRC2012 for smooth training. The accuracy on the
validation set is 56.5% after training, which outperforms
AlexNet on the raw RGB values of each frame (43.3%)
and underperforms the temporal stream on the optical
flow reported by Simonyan and Zisserman [15]. How-
ever, this is not a problem because our purpose was not
to achieve the best performance on the activity dataset

but to acquire effective features for temporal difference
images. In training, we used difference images of four-
frame intervals. We do not apply weak stabilization to
UCF-101 videos because camera-centric motion is much
less in this dataset.

4.2 Sliding-window detection

The final output of our network is determined using
boosted forests. Our detector is a sliding-window detector
that classifies densely sampled windows over the feature
maps at test time (Fig. 1c).

A main challenge in training the two-stream detector is
the larger dimensionality of the feature maps. The output
from the two streams has 512 channels after concatena-
tion, and this becomes twice as large as the single spatial
stream which makes forests likely to cause overfitting.
Thus, we apply data augmentation in the training of the
forests. We include both images with and without motion
features in the training data. Let us denote the pair of the
inputs to our two-stream ConvNets as (I, D(I)), where [ is
the input image and D(J) is the temporal difference of I.
We prepare both (I, D(I)) and (/,0) as training data for
each labeled bounding box. The term D(I) = 0 means
that the object in [ is stationary. This data augmentation
mitigates overfitting and prevents detectors from missing
stationary people in the scenes.

We set the hyper parameters of boosted forests to the
same as those discussed by Yang et al. [16]. Namely,
the number of trees was 4096 and maximum depth of
each tree was 5. The ensemble was constructed with
the Real AdaBoost algorithm, and the trees were trained
with brute-force-like search and pruning [71]. ConvNet
features are known to be powerful enough even with-
out fine-tuning on the target tasks [72]. Thus, we did
not fine-tune either of the two streams and only the
forests were trained on the Caltech Pedestrian Detection
Benchmark.
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4.3 Pre-processing for the temporal stream

We use temporal differences of weakly stabilized frames
[7] as motion descriptors to input to the temporal stream
(Fig. 1a). We describe it here for completeness and conve-
nience in notation. First, we calculate the optical flow [73]
between the current frame that contains the target and
its previous frames. Next, we warp the previous frames
using the optical flow, as visualized in Fig. 2. We denote
these frames as I, (fo, fprev) Where fo is the current time,
tprev is the previous time, and p is the smallest size of
the patches used in calculating the optical flow. The opti-
cal flow is calculated in a coarse-to-fine manner, and p
controls the fineness of the flow. We can use several pre-
vious frames and obtain longer motion features as follows.
Weakly stabilized frames are

L(to, 1)
I,(to, t
Sito) = | o) (1)

Ip (20, tn)

and temporal differences of these frames are

I(to)

I(to)

D(tp) - S(to)

I(t)
I(to) — Iy(to, t1) ()
I(to) — Ip(to, t2)

1(to) — Ip(to, tn),

where I(ty) is the current frame and # is the number of
frames, which gives the time range of motion features.
The choice of p is important for removing relatively
uninformative camera-centric or object-centric motions
while preserving object deformation and pose change.
The coarse flow is useful for this purpose, as previously
discussed [7]. We set p to 32 pixels square. For calculating
motion, we used the second and fourth previous frames,
following [7] for Caltech Pedestrian. There are a variety
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of optical flow methods for stabilization. Our choice is
Lucas-Kanade flow [73] because it is simple and robust
enough to work on Caltech Pedestrian images (30 fps,
640x480 pixels). Other options [74, 75] are also possible
and may perform better on more complex scenes or low
frame-rate videos.

4.4 Implementation details

Feature map generation We use convolutional layers
as feature transformation per frame to enable sliding-
window detection over the feature maps, differently from
per-window classification approaches [18, 34]. In classi-
cal neural networks, the input size (of the image) has to
be fixed; however, ConvNets have been recently used as
flexible filters, which are applicable to images of arbitrary size
(over the size of the convolutional kernels) and fixed channel
numbers [16, 76, 77]. This becomes possible when ConvNets
are without fully connected layers. We use ConvNets in
this manner; namely, they are applied to clipped windows
in training but to full-size input images during the test.
During the test, the forest classifier looks up pixels in the
feature maps, the pre-computed convolutional features of
the whole image, to execute sliding-window detection. We
also adopt pyramid patchworking [78] during the test.
That is, we stitch the spatial pyramid of an input image
into a larger single image, which shortens test runtime.
This makes the input image size 932 x 932 pixels while
the original size of frames is 640 x 480 pixels.

Computation Our implementation is based on the CCF
[16] implementation, which is based on Piotr’s MATLAB
Toolbox including the aggregate channel feature (ACF)
[19] detector. It also uses Caffe [79] for convolutional fea-
ture extraction on GPUs. Weak motion stabilization is
also included in Piotr’s Toolbox. Our test and training
environment was a workstation with two Intel Core i7-
5930K CPUs (3.50 GHz, 12 cores), 512 GB memory, and
two NVIDIA GeForce GTX TITAN X video cards. Note
that 512 GB memory is necessary for training our boosted
forests on memory with data augmentation.

Original
images

Weakly

stabilized while deformation of the person remains

stabilized (v |- e | Y
images

Fig. 2 Effects of weak motion stabilization [7]. Upper images are original input images and lower images are stabilized ones. Background motion is

Current frame
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5 Experiments

To provide comprehensive understanding of the deep
motion feature of our proposed mothod, we present
experiments and analyses consisting of the following three
parts: validation, evaluation, and visualization. First, we
validated our configuration of networks by comparing
it with baselines such as hand-crafted motion features
and ImageNet-pretrained ConvNets used as the temporal
stream (validation). Next, we evaluated our detector with
the motion features in the test sets of Caltech Pedestrian
Detection Benchmark [80] and Daimler Mono Pedes-
trian Detection Benchmark Dataset [81] and compared
our detector with the state-of-the-art methods from the
leader boards (evaluation). Finally, we visualize the detec-
tion results and learned models to understand how and
when the motion features improve pedestrian detection
(visualization).

5.1 Network selection and validation
First, we compared three candidate combinations of
the network architecture, pre-training data, and inputs
for the temporal stream of our network: (1) VGGNet-
16 pre-trained on ILSVRC2012 by inputting previous
weakly stabilized frames (VGG-SF), (2) VGGNet-16 pre-
trained on ILSVRC2012 by inputting the temporal differ-
ences of stabilized frames (VGG-SDt), and (3) AlexNet
fully trained on UCF-101 by inputting the temporal dif-
ferences of stabilized frames (U CFAlex-SDt). We also
validated ACF, CCF, and our new implementation of
CCF+S8Dt for comparison. We used previous second and
fourth frames in CCF+SDt. Only the previous fourth
frames is used in temporal ConvNets for simpler imple-
mentation. The compared combinations are listed in
Table 1.

The performances of the candidates were evaluated with
a bounding-box-level classification task using the train-
ing sets. First, we collected clipped bounding boxes from
the training sets of the benchmark (set00—set05). We
used every fourth frame from the training set to acquire

Table 1 Methods we validated in the splits of training data in
Caltech Pedestrian Detection Benchmark [8], sorted by validation
error rates in descending order (corresponding to Fig. 3)

Method Spatial Temporal Temporal Temporal
feature feature pre-training  input

ACF [19] Hand-crafted - - -

CCF [16] VGGNet-16 - - -

CCF +VGG-SF  VGGNet-16  VGGNet-16  ILSVRC2012  SF

CCF + SDt VGGNet-16  SDt itself - SDt

CCF +VGG-SDt  VGGNet-16  VGGNet-16  ILSVRC2012  SDt

CCF + UCFAlex- VGGNet-16  UCFAlex UCF-101 SDt

SDt
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more training boxes. This setting is often referred to as
Caltech10x. We used the ground truth annotations. For
negative windows, we used those generated in the hard
negative mining process for training of a baseline algo-
rithm, i.e., ACF detector [19]. We conducted 3-stage hard
negative mining with ACF and refer to those collected
negatives as NegStagel-3. Next, we split each group of
bounding boxes into two parts, the first half for train-
ing and the latter half for validation. We did not apply
data augmentation in this validation for comparison in
an equal amount of training data. For hyperparameters of
boosted forests, the maximum number of weak classifiers
was fixed to 4096, and the maximum depth of trees to 5.
Note that only the forest classifier was trained on Caltech
Pedestrian and the networks were not fine-tuned after
pre-training separately on Caltech Pedestrian or other
datasets.

Figure 3 shows the validation results. All methods with
multi-frame motion information improved in accuracy
compared to single CCF. Motion information from sta-
bilized differences had more positive effects on classi-
fication than that from stabilized frames without time
differencing, even VGGNet-16 trained on still images was
used (CCF+VGG-SF vs. CCF+VGG-SDt). This should
be because of the correlation between frames, which is
known to be harmful for decision trees [82]. Time differ-
encing can mitigate this correlation and improve train-
ing of decision trees. ConvNets over SDt worked better
than simple SDt (CCF+SDt vs. CCF+VGG-SDt), and our
motion-specialized AlexNet was more suited to process
SDt (CCF+VGG-SDt vs. CCF+UCFAlex-SDt). It would
be surprising that transferred features from the far task
of activity recognition work in pedestrian detection. This
suggests that the distance of input domain, i.e., still images
vs. difference images, mattered more than the distance
of the tasks in reusability of lower-level convolutional
features. Several examples for difference images for pre-
training are shown in Fig. 4. Overall, the combination
of AlexNet re-trained on activity recognition and stabi-
lized differences (CCF+UCFAlex-SDt) performed the best

0.08 - q
With motion
0.07
0.06 -
§ 0.05 -
=
S 0.04 +
£
M 003 4
0.02
0.01
0 - T T T T T
ACF CCF CCF + CCF + CCF + CCF +
VGG-SF SDt VGG-SDt  UCFAlex-
SDt
Fig. 3 Error rates of the methods in Table 1 in patch-based validation
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Fig. 4 Temporal differences in UCF-101 [21], activity recognition dataset we used to train temporal stream

among the candidates. Below, we refer to CCF+UCFAlex-
SDt as TwoStream.

5.2 Detection evaluation

Next, we conducted detection experiments on the test
sets of the Caltech Pedestrian and DaimlerMono to eval-
uate the performance of two streams. We also compared
the results of two streams to current pedestrian detec-
tion methods including ones using only single frames
and using motion information. We also evaluated our
implementation of CCF+SDt to compare to our temporal
ConvNets.

In the evaluation, we strictly followed the evaluation
protocol of the benchmark. For the training/test split,
we used the suggested split on the benchmark, namely,
set00—05 for training and set06—10 for test. Detection
was run on every thirtieth frame of each test video. The
previous frames of the test frames were also used in the
test because two streams requires them. We used sec-
ond and fourth previous frames in CCF+SDt and fourth
frames in two streams. We conducted all the evalua-
tion process using official APIs for the dataset. We also
applied our detector to the test set of DaimlerMono in
the same manner to see whether our detector generalizes
to another dataset. Because DamilerMono only provide
gray-scale frames, we convert them to RGB by simply
copying the channels. As we aim to evaluate transferabil-
ity of our Caltech-trained detector, note that the training
set of DaimlerMono is not used.

To train our detector for evaluation, we sampled bound-
ing boxes from every fourth frames from the training sets
(set00—-05), using the baseline detector, i.e., ACF [19]. For
better performance, we used flipped windows of positive
samples in addition to the original training data. We also
applied data augmentation to the positives and NegStagel
and 3, but not to NegStage2 due to memory reasons. The
numbers of positive and negative training windows were
50,000 and 100,000, respectively, after data augmentation.

The results were evaluated using receiver operation
characteristic (ROC) curves, which plot detection miss
rates to the numbers of false positives per images.
Figure 5a shows the ROC curves of the detection results

in Caltech Pedestrian. It also shows published results in
the evaluation paper and scoreboard of the benchmark
for comparison. We included the results of boosted-
forest-based methods, namely, ACF and ACF-caltech+
[19], LDCF [82], Checkerboards+ [20], TA-CNN [17],
CCF [16], MultiFtr+Motion [6], ACF+SDt [7], and our
baseline implementation for a deep method with motion

a
80+
64+
50

20

= 0.509 MultiFtr+Motio:
——0.467 ACF

0.373 ACF+SDt
10k 0.298 ACF-Caltech+
0.248 LDCF
=—10.209 TA-CNN
—0.188 CCF
~—=0.179 CCF+SDt
.05 |- | ====0.171 Checkerboards+
=== ().167 TwoStream (ours)

Miss rate (MR)

10 102 107 10° 10!
False positives per image (FPPI)

.80
.64 -
.50 [

.20

===0.603 HOG
= 0.592 MultiFtr

10} |[T—0.390 CCF

0.379 DPM
~0.353 ConvNet

=== ().352 TwoStream (ours)
= 0.322 MultiFtr+Motion
.05 - |==——0.314 RandForest

0.290 MLS

Miss rate (MR)

10 102 107" 10° 10"
False positives per image (FPPI)
Fig. 5 Detection result curves in (a) Caltech Pedestrian and (b) Daimler
Mono. Lower miss rates show better detection performance. We also
show log-average miss rates of the methods next to their labels




Yoshihashi et al. IPSJ Transactions on Computer Vision and Applications (2018) 10:12

(CCF+SDt). The proposed method (two streams, log-
average miss rate 0.167) performed 10% better than
motion-free baseline (CCF, 0.188), and this is a larger
improvement than by simply adding SDt to CCE. Two
streams performed better than all the hand-crafted-
feature-based detectors with or without motion and two
deep detectors CCF and TA-CNN.

Figure 6 shows several examples of detection in Caltech
Pedestrian. Two streams detected more pedestrians than
single-frame-based CCF due to temporal information, as
shown in Fig. 6a. Low-resolution pedestrians were par-
ticularly difficult even for humans to detect in single
frames; however, Two stream succeeded in detecting them
from motion. In contrast, Fig. 6b shows suppressed false
detections by TwoStream, which were misdetected by
only single-frame information. This shows motion is also
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useful to reject non-pedestrian region more easily than
only by appearance.

Figure 5b shows the ROC curves of the detection
results in DaimlerMono. In this transfer setting from
Caltech to DamilerMono, the proposed TwoStream per-
formed better than the baseline CCF by 3.8 percent-
age points or 10.7% in relative. This means TwoStream
is transferable to another dataset from Caltech Pedes-
trian. TwoStream also outperformed existing ConvNet
[37], while the hand-crafted-feature-based methods (Mul-
tiFtr+Motion [6], RandForest [83], and MLS [84]), which
are considered to be more robust in gray-scale images,
marked better scores. We also note that these three
detectors are trained in INRIA dataset, that seems
to be closer to DamilerMono, while we used Caltech
Pedestrian.

ground truth

Fig. 6 Detection examples and comparison with CCF (baseline) and TwoStream (ours). TwoStream detects more pedestrians, including
hard-to-detect ones, with help of temporal information (a). TwoStream is also more robust against hard negative samples than CCF (b)
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Fig. 7 Patches scored with TwoStream and single-frame baseline CCF. Numbers below each sample indicate TwoStream score, CCF score, and their
difference, respectively. a Negative patches scored lower with TwoStream, which were more confidently rejected by motion information. b Positive
patches scored higher with TwoStream. Pedestrians not clear due to blur or low contrast were more robustly detected. Panels ¢ and d show

5.3 Analyses and visualization

How did detection confidences change? To understand
how the motion stream helps recognition, we present
examples of patches differently scored with TwoStream
and single-frame baseline CCF in Fig. 7. We also show
each patch’s temporal differences with weak stabiliza-
tion, which were the input for the motion stream in
TwoStream. Figure 7a shows negative samples scored
highly with CCF but were mitigated with TwoStream.
Non-pedestrian objects such as poles (a and b) or parts
of vehicles (c and d) also scored highly. They have ver-
tical edges and may be misclassified as pedestrians only

by appearance, but they can be correctly rejected by
motion information because they are rigid and their tem-
poral differences are negligible after stabilization. How-
ever, non-pedestrian samples may produce large temporal
differences by fast motion information such as crossing
vehicles (e). In this case, the motion stream CNN seems
to discriminate difference patterns and correctly ignore
non-pedestrian motions. Panel d is a hard negative of a sil-
houette of a person in a traffic sign, that was successfully
rejected by TwoStream. Figure 7b includes pedestrians
that scored higher with TwoStream. TwoStream scored
highly for pedestrians with typical and salient motion

ACF CCF

Single-frame
features

Motion
features

CCF+SDt Two Stream

Head pattern

Leg pattern

Fig. 8 Visualization of learned pedestrian filters via boosted forests: frequency distributions of features selected by boosting on pedestrian windows
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S
F
5]
&
10 @ CCF
5 @ TwoStream (Ours)
0
4 5 6 7 8 9
Depth of the trees

Fig. 9 Relationship between tree depth in boosted forests and
log-average miss rate in Caltech Reasonable subset. TwoStream
consistently outperformed the baseline with depth of 5 to 8, thus was
robust against this parameter, while overly shallow (less than 4) or
deep (over 9) trees degraded detection performance

patterns (g, h, and j) by large margins, which supports
that it utilizes pedestrian motions for recognition. In addi-
tion, blurred or non-salient pedestrians (i, k, and 1) tended
to be scored lower on the basis of only appearance fea-
tures, but many parts of such pedestrians were detected,
thanks to motion feature information. There were sev-
eral contrasted cases, i.e., non-pedestrians scored higher
and pedestrians scored lower with TwoStream, as shown
in Fig. 7c, d, respectively. Negative patches with complex
shapes such as trees or parts of buildings were sometimes
scored the same or higher with TwoStream (m and n), and
a vehicle’s motion that was not correctly stabilized (o) also
caused misdetection. Pedestrians were scored lower when
they were static (p), occluded by moving vehicles (r), or
made rare motions such as getting into cars (q), whose
motion patterns the detector may fail to learn from the
training set.
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Visualization We visualized trained forests on different
features, as shown in Fig. 8. The figure shows frequency
distributions of where in feature maps was seen by deci-
sion nodes in the forests. Comparing ACF and CCE, a
clearer pedestrian shape on the deep feature maps via CCF
was observed, while ACF used backgrounds as well. Com-
paring the temporal features of CCF+SDt and TwoStream,
SDt grasps pedestrian contours while TwoStream used
more motion patterns around the legs and heads.

Runtime The runtime of TwoStream on 640x480 videos
were 5.0 s per frame on average. The runtime of CCF was
3.7 s per frame in [16] and 2.9 s per frame in our envi-
ronment. Both were implemented on MATLAB and Caffe
on GPUs. The overheads with our temporal stream and
coarse optical flow were less dominant than other factors
including video decoding and communication with GPUs
in our implementation.

Tree depth Tree depth is an important parameter to fully
exploit strong features in boosted-forest-based detectors.
We further investigated the impact of tree depth in the
forest in Fig. 9. We found that the miss rate did not largely
differs with depths of around 6. It consistently outper-
formed the baseline CCF with depth of 5 to 8; and thus,
it is robust against setting of this hyperparameter. Here,
we put best-performing CCF with tree depth of 5 as the
baseline. Nevertheless, overly shallow (less than 4) or deep
(over 9) trees degraded detection performance.

Failure cases Failure cases where TwoStream did not
improve detection compared to the original CCF are
shown in Fig. 10. A major cause of failures is inaccurate
optical flow around occlusion (the top sample in Fig. 10)

Current frame

Stabilized previous frame

Difference

ground truth

Blue: TwoStream (ours)

Fig. 10 Failure cases. In these frames, TwoStream caused new misdetections that CCF did not misdetected, due to improperly stabilized motions by
inaccurate optical flow
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Table 2 Reduction of MR by combining our deep motion feature
with various appearance features

Base method ACF-ours LDCF-ours CCF  Two-stage
CNN

Appearance feature only 36.7 334 188 136

With our deep motion feature 31.4 30.6 16.4 12.4

Lower is better

or image boundaries (the lower samples), which fails to
remove background motions. However, we also noted that
TwoStream improved the total detection accuracy despite
such optical flow errors, thanks to complementary usage
of appearance and motion features.

5.4 Combination with other methods
To show the effectiveness of our deep motion feature, we
combined them with other types of methods and eval-
uated relative performances. First, we adopted popular
hand-crafted channel features, ACF [19] and LDCF [82],
in addition to CCF. In implementation, we replaced CCF
in TwoStream by the other appearance features without
modification. Training details are the same as those for
our implementation of CCF. The results are shown in
Table 2. Our deep motion features decreased MR by 5.3%
with ACF and by 2.8% with LDCEF. The results confirmed
that our deep motion features consistently improve detec-
tion performance of various appearance-based features.
Second, we examined the combination with second-
stage CNN (two-stage CNN) that gives two-stage
pipelines similar to state-of-the-art systems [18, 53, 85].
In this setting, we rescore the detected regions by CCF
or TwoStream by a vanilla VGGNet-16 [32] fine-tuned on
Caltech Pedestrian by ourselves, instead of the CNNs re-
engineered for pedestrians [18, 53, 85]. TwoStream still
provided significant improvement of MR by 1.2%, and this
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suggests that our deep motion features can improve the
state-of-the-art detectors with two-stage pipelines.

Some very recent deep-learning-based methods outper-
formed ours in Caltech Pedestrian by using more complex
networks. Three deep methods without motion, namely
DeepParts (11.9% MR) [18], CompACT-Deep (11.7% MR)
[53], and SA-FastRCNN (9.7% MR) [85] outperformed
TwoStream because of the differences in the frameworks
and the learning methodology. Specifically, one main dif-
ference is that these methods adopted two-stage architec-
ture, i.e., first generate candidate bounding boxes by other
detectors and then re-categorize them by second-stage
ConvNets.

They also introduced techniques to improve second-
stage ConvNets, such as part mining [18], cascading with
shallow features [53], or scale adaptation [85]. The other
difference is that the ConvNets in them are pre-trained
using ILSVRC2014-DET and then fine-tuned by Caltech
Pedestrian. TwoStream realizes simpler system, as it does
not require other detectors for object proposals; how-
ever, it may improve by updating the ImageNet dataset for
pre-training and introducing fine-tuning over pedestrian
datasets. In addition, TwoStream can alternate the sliding-
window detectors in those deep methods, and this would
further improve overall performance since TwoStream
can detect some pedestrians that the above methods miss
due to visual obscurity or hard blur, as shown in Fig. 11.
Specifically, [18, 83] used LDCF [82], and [53] used ACF
[19] + LDCEF [82] + CheckerBoard [20] as their first-stage
detectors, and ours outperformed all of them.

End-to-end deep-learning-based approaches [86, 87]
also work well in Caltech, but they require full-frame-
annotated training data; thus, are not applicable to
datasets that only provide pre-cropped training windows
such as DaimlerMono.

Blue: TwoStream (ours) Red: DeepParts

Green: ConpACT-Dee

Misdetection with
the existing detector

ground truths

Fig. 11 Comparison with state-of-the-art detectors. Our motion-based detector succeeded in detecting pedestrians that were missed with both
DeepParts and CompACT-Deep. Thus, ours can be complementary for these motion-free deep detectors
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6 Conclusions
We demonstrated a method for exploiting motion infor-
mation in pedestrian detection with deep learning. With
our method, we fused the ideas from a two-stream net-
work architecture for activity recognition and convolu-
tional channel features for pedestrian detection. In the
experiments on the Caltech Pedestrian Detection Bench-
mark and Daimler Mono Pedestrian Detection Bench-
mark, we achieved a reasonable decrease of detection miss
rate compared to existing convolutional network pedes-
trian detectors, and the analyses revealed that the motion
feature improved detection in recognizing hard examples,
which even state-of-the-art detectors fail to discriminate.
We also believe that our framework is helpful in con-
sidering other video-based localization tasks, such as
generic object detection in video and video segmentation.
In future, we explore such applications of deep motion
features.
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