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Abstract

We present a simple multi-scale learning network for image classification that is inspired by the MobileNet.
The proposed method has two advantages: (1) It uses the multi-scale block with depthwise separable convolutions,
which forms multiple sub-networks by increasing the width of the network while keeping the computational resources
constant. (2) It combines the multi-scale block with residual connections and that accelerates the training of networks
significantly. The experimental results show that the proposed method has strong performance compared to other
popular models on different datasets.
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1 Introduction
Convolutional neural network (CNN) has been proposed
since the late 1970s [1], and the first successful applica-
tion is the LeNet [2]. In CNNs, weights in the network
are shared, and pooling layers are spatial or temporal
sampling using invariant function [3, 4]. In 2012,
AlexNet [5] was proposed to use rectified linear units
(ReLU) instead of the hyperbolic tangent as activation
function while adding dropout network [6] to decrease
the effect of overfitting. In subsequent years, further pro-
gress has been made by using deeper architectures [7–10].
For multiple-scale leaning network, in 2015, He et al.

[11] proposed a ResNet architecture that consists of many
stacked “residual units.” Szegedy et al. [12] proposed an
inception module by using a combination of all filter sizes
1 × 1, 3 × 3, and 5 × 5 into a single output vector. In 2017,
Xie [13] proposed the ResNeXt network structure, which
is a multiple-scale network by using “cardinality” as an es-
sential factor. Moreover, the multiple-scale architectures
have also been successfully employed in the detection [14]
and feature selection [15]. The bigger size means a larger
number of parameters, which makes the network prone to
overfitting. In addition, larger network size can increase
computational resources. Some efficient network architec-
tures [16, 17] are proposed in order to build smaller, lower

latency models. The MobileNet [18] is built primarily by
depthwise separable convolutions for mobile and
embedded vision applications. The ShuffleNet [19]
utilizes pointwise group convolution and channel
shuffle to greatly reduce the computation cost while
maintaining the accuracy.
Motivated by the analysis above, in this paper, we use

the multiple-scale network to construct a convolutional
module. Different sizes can become more robust to scale
the changes. Then, we use depthwise separable convolu-
tions to modify the convolutional module. In addition,
residual connections are combined into the network.
The experimental results show that the proposed
method has better performance and less parameter on
different benchmark datasets for image classification.
The remaining of this paper is organized as follows:

Section 2 reviews the related work. Section 3 details the
architecture of the proposed method. Section 4 describes
our experiment and discusses the results of our experi-
ments. Section 5 concludes the paper.

2 The depthwise separable convolutions
Depthwise separable convolutions divide standard convo-
lution into a depthwise convolution and a 1 × 1 pointwise
convolution [18]. The depthwise convolution applies a
single filter to each input channel, given the feature map
is expressed by DF ×DF ×M. Depthwise convolution with
one filter per input is as follows (Eq. (1)):
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Ĝk;l;m ¼
X

i: j

K̂ i; j;m � Fkþi−1;lþ j−1;m ð1Þ

where K̂ is the depthwise convolutional kernel of the
size Dk ×Dk ×M. F is the feature map of the input. The
mth filter in K̂ is applied to the mth channel in F to pro-

duce output feature maps Ĝ. i, j represent the pixel pos-
ition of the convolutional kernel. k, l are the pixel
positions of the feature map.
Pointwise convolution is a simple 1 × 1 convolution

and used to create a linear combination of the depthwise
layer. The architecture is shown in Fig. 1. The standard
convolutional filters (Fig. 1a) are replaced by two layers:
depthwise convolution (Fig. 1b) and pointwise convolu-
tion (Fig. 1c). The depthwise separable convolutions
have the effect of drastically reducing the computation
and model parameters.

3 The proposed method
Our method increases the multi-scale features of the
network. It contains features at different scales of the in-
put. In the merge of these features, we adopt two differ-
ent merge methods: feature connection and feature
addition. The two kinds of merge methods can be
expressed by the following: Eq. (2) and Eq. (3) (our

method 1 and method 2), respectively. And with the
depthwise separable convolution, it reduces the com-
plexity of calculations. G represents the feature map. h
and w represent the width and height of the features
map, respectively. Gm

n represents the mth input feature
maps at the nth scale that need to be merged. i and j rep-
resent the corresponding pixel position.

Gh�w� m�nð Þ ¼ concat G1
1;⋯;Gm

n

� � ð2Þ

Gh�w�m ¼
X

i; j∈h;w

G1
1i� j þ⋯þ Gm

n i� j

� �
ð3Þ

In Eq. (2), concat is a connecting function. The feature is
connected by different scales to a larger dimension. In
Eq. (3), the feature is composed of the sum of the corre-
sponding pixel of the different scale feature maps. The
structures of the multi-scale separable convolutional unit
are shown in Fig. 2. Figure 2a is a network unit of our
method 1. Figure 2b is a network unit of our method 2. N
represents the number of extended feature maps. The
number of feature maps is increased by 1 × 1 pointwise
convolution. From Fig. 2, multi-scale separable convolu-
tions are constructed by using a 3 × 3 convolution layer
and two 3 × 3 convolution layers. They are connected
(Fig. 2a) or added (Fig. 2b) by different forms, which in-
crease the width of the network. For smaller input datasets,
we usually choose 2–3 units to construct the network. The
network structure (input is 32 × 32) is described in detail
(Table 1). It is composed of three parts: input layer, three
network units, and two fully connected layers.
To compare the different network, we also split

GoogLeNet, AlexNet, and MobileNet into different units
respectively (Fig. 3). Figure 3a is a standard convolutional
filter that is applied into AlexNet. Figure 3b is a depthwise
separable convolutional filter that is applied into
MobileNet. Figure 3c is the structure of GoogLeNet.
We give the calculation of the training parameters

(Table 2). The training parameters of GoogLeNet are far
more than MobileNet (almost 13 times). AlexNet is
seven times more than MobileNet. And our methods are
only two times MobileNet. But their performances are
significantly higher than the MobileNet. The specific re-
sults can be seen in the experimental part (Section 4).

4 Experiments
In this section, the experiments on several public datasets
are conducted to demonstrate the effectiveness of the pro-
posed method. We also compare the proposed method
with some existing methods including GoogLeNet,
AlexNet, and MobileNet. Different layers are used for
different datasets.

Fig. 1 The architecture. a Standard convolution filters. b Depthwise
convolutional filters. c 1 × 1 convolutional filters called pointwise
convolution in the context of depthwise separable convolution
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4.1 Experiments on MNIST
The MNIST dataset contains 60,000 training and 10,000
test images of ten handwritten digits, which consist of
28 × 28 pixel gray images. We use two multi-scale
separable convolutional units for our methods. Figure 4
is the visualization of tensorflow for our method 1. To
compare the performance, we also choose two units for
GoogLeNet, AlexNet, and MobileNet.
The experimental data can be shown in Table 3.

We use 128 training images as a batch. Iteration of
training is for 5000 batches. It can be seen that the
accuracy of our method 2 is the highest, at 99.03%.
The accuracy of our method 1 is 98.99%. MobileNet
is only 94.59%, AlexNet is 97.80%, and GoogLeNet is
97.98%. According to Table 2, the parameters on dif-
ferent networks are compared. MobileNet has the
least parameters. Our methods are twice more than
MobileNet. GoogLeNet has the most parameters that
need more computational resource.

4.2 Experiments on CIFAR-10
The CIFAR-10 dataset is composed of ten classes. It
splits into 50,000 train images and 10,000 test images.
Each image is an RGB image of 32 × 32 pixels. Consider-
ing the larger parameters, GoogLeNet is only composed
of two units. All other networks use three-layer units.
We use 128 training images as a batch. Iteration of
training is for 5000 batches.
The experimental results in Table 4 show that

GoogLeNet’s accuracy is the best for CIFAR-10. The ac-
curacy of our method 1 is 72.4%. The accuracy of our
method 2 is 71.1%. AlexNet is in between the two.
MobileNet is only 65.6%. It also shows that AlexNet and
GoogLeNet require the most training parameters. The
training parameters of AlexNet are 13 times that of
MobileNet. But its accuracy is only increased by 10%,
the same with GoogLeNet that is more obvious. Our
method 1 and our method 2 are up to 7% compared to
MobileNet. The parameters of our methods are only
twice more than that of MobileNet.

4.3 Experiments on the SVHN
SVHN is a dataset of Google’s Street View House
Numbers. It contains about 600,000 digit images, com-
ing from a significantly harder real-world problem. It
has two formats: full numbers and cropped digits. And
we use the second one. All digits have been resized to a
fixed resolution of 32 × 32 pixels. Considering the simi-
larities between experiment 3 and experiment 2, such as
the number of categories, the size of the image pixels,
and so on, we adopt the network framework of

Table 1 The proposed body architecture

Layers Out
size

K size Stride N Out channels

Method 1 Method 2

Input 32 × 32

Unit 1 16 × 16 3 × 3, 1 × 1 1 32 32 64

Unit 2 8 × 8 3 × 3, 1 × 1 1 64 64 128

Unit 3 4 × 4 3 × 3, 1 × 1 1 128 128 256

Fc1 384

Fc2 192

Fig. 2 The multi-scale separable convolutional units. a Network unit of our method 1. b Network unit of our method 2
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experiment 2. GoogLeNet uses two network units, and
others use three network units.
We use 128 training images as a batch. Iteration of

training is for 10,000 batches. The experimental results
are shown in Table 5. GoogLeNet and AlexNet’s accur-
acy is very close (92.3 and 92.0%). The accuracy of our
method 1 is 91.6%. The accuracy of our method 2 is
91.3%. MobileNet is 90.8%, but AlexNet and GoogLeNet
require the most training parameters. Our method over-
comes this shortcoming and improves its performance
obviously. Meanwhile, it only needs two times the pa-
rameters of MobileNet.

4.4 Experiments on Tiny ImageNet
Tiny ImageNet is a subset of the ImageNet challenge
(ILSVRC). It contains 200 different categories. Each class
has 500 training images, 50 validation images, and 50
test images. In addition, the images are resized to 64 ×
64 pixels (256 × 256 pixels in standard ImageNet).
Table 6 is the result of our experiment; the accuracy of

GoogleNet (48.26) is the highest. AlexNet (44.25%) is
the second highest. Their complexities are high and need
more computational resource. Although MobileNet has
lower computational complexity, its accuracy (34.53%) is
very low. Our methods (method 1 and method 2) im-
prove the testing accuracy while reducing the computa-
tional resource.

5 Discussion
To compare the performance, the curves of different
networks are also analyzed. Figure 5 is the accuracy of
the different network on MNIST. The maximum itera-
tions of training are for 5000 batches. Testing is once
per training 100 times. It can show that the performance
of multi-scale networks is significantly best.
In Fig. 6, the accuracy of our methods and AlexNet

is very close. GoogLeNet is relatively higher. Mobile-
Net is relatively low. But our methods have a clear
advantage over GoogLeNet and AlexNet in terms of
training parameters.
In Fig. 7, it is the comparison of SVHN accuracy. The

maximum iterations are for 10,000 batches. Testing is
once per training 100 times. After 5000 iterations, we
can find that the test accuracy is a clear upward trend.
So we choose 10,000 as maximum iterations.
In Fig. 8, the test accuracy of different networks with

different iterations is shown. Because of the complexity
of the database, we set different parameters. The max-
imum iterations are for 42,000 batches. Testing is once
per training 3000 times.
In contrast to Figs. 5, 6, 7, and 8, it can be found that

different network structures show different test perfor-
mances, and the same network also shows a big differ-
ence. On MNIST, our methods get the best accuracy.
And they converge faster than GoogleNet, AlexNet, and

Table 2 Training parameters of different network unit

Network structure GoogLeNet AlexNet MobileNet Method 1 Method 2

Number of training parameters N + N + N*9 + N + N*5*5 + N N*3*3 N*1*1 + 3*3 3*3*3 + 2*N*1*1

If N = 32 1216 288 41 91

Fig. 3 The different structure. a AlexNet units. b MobileNet units. c GoogLeNet unit
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Fig. 4 The visualization of tensorflow for our method 1

Table 3 The performance of different network on MNIST

Methods Iterations, 5000; batch_size, 128

Acc(%) Number of training parameters

GoogLeNet 97.98 6640

AlexNet 97.80 864

MobileNet 94.59 114

Our method 1 98.99 246

Our method 2 99.03 246

Table 4 The performance of different network on CIFAR-10

Method Iterations, 5000; batch_size, 128

Acc(%) Number of training parameters

GoogLeNet 76.5 6640

AlexNet 75.7 2016

MobileNet 65.6 251

Our method 1 72.4 529

Our method 2 71.1 529

Table 5 The performance of different network on SVHN

Method Iterations, 10000; batch_size, 128

Acc(%) Number of training parameters

GoogLeNet 92.3 6640

AlexNet 92.0 2016

MobileNet 90.8 251

Our method 1 91.6 529

Our method 2 91.3 529

Table 6 The performance of different network on Tiny ImageNet

Method Iterations, 42000; batch_size, 256

Acc(%) Number of training parameters

GoogleNet 48.26 6640

AlexNet 44.25 2016

MobileNet 34.53 251

Our method 1 43.19 529

Our method 2 41.80 529
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Fig. 5 The comparison of MNIST accuracy

Fig. 6 The comparison of CIFAR-10 accuracy

Fig. 7 The comparison of SVHN accuracy
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MobileNet. Training parameters of our methods are less
than GoogleNet and AlexNet. On the Cifar-10, although
AlexNet and GoogleNet have a slightly higher test accur-
acy, they require more training parameters. And the ac-
curacy of our methods is very close to them. At the
beginning of the training, our methods converge faster
than others. On SVHN datasets, we use the same layers
as that on CIFAR-10. The accuracy of our methods,
AlexNet, and GoogleNet has the same trend. In our
methods, the second method is slightly better than the
first method. On Tiny ImageNet, this is a relatively com-
plex dataset. Although the accuracy is not high, we can
still make a relative comparison. The accuracy of
GoogleNet is best. AlexNet is the second. Our methods
are close to AlexNet while far superior to MobileNet.

6 Conclusions and future work
In this paper, we propose a multi-scale separable convo-
lutional neural network, which overcomes the problem
of multiple parameters and large computational re-
source. By comparing the accuracy and training parame-
ters, the experimental results show that our methods are
robust for improving the network accuracy and retaining
less parameter. In the next work, we will further develop
it to deeper networks and study its performance on lar-
ger datasets.
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