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Abstract

Structure from motion (SfM) using imagery that involves extreme appearance changes is yet a challenging task due to
a loss of feature repeatability. Using feature correspondences obtained by matching densely extracted convolutional
neural network (CNN) features significantly improves the SfM reconstruction capability. However, the reconstruction
accuracy is limited by the spatial resolution of the extracted CNN features which is not even pixel-level accuracy in the
existing approach. Providing dense feature matches with precise keypoint positions is not trivial because of memory
limitation and computational burden of dense features. To achieve accurate SfM reconstruction with highly
repeatable dense features, we propose an SfM pipeline that uses dense CNN features with relocalization of keypoint
position that can efficiently and accurately provide pixel-level feature correspondences. Then, we demonstrate on the

Aachen Day-Night dataset that the proposed SfM using dense CNN features with the keypoint relocalization
outperforms a state-of-the-art SfM (COLMAP using RootSIFT) by a large margin.
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1 Introduction

Structure from motion (SfM) is getting ready for 3D
reconstruction only using images, thanks to off-the-shelf
softwares [1-3] and open-source libraries [4—10]. They
provide impressive 3D models, especially, when targets
are captured from many viewpoints with large over-
laps. The state-of-the-art SfM pipelines, in general, start
with extracting local features [11-17] and matching them
across images, followed by pose estimation, triangulation,
and bundle adjustment [18—20]. The performance of local
features and their matching, therefore, is crucial for 3D
reconstruction by SfM.

In this decade, the performance of local features,
namely, SIFT [11] and its variants [16, 21-24] are vali-
dated on 3D reconstruction as well as many other tasks
[25-27]. The local features give promising matches for
well-textured surfaces/objects but significantly drop its
performance for matching weakly textured objects [28],
repeated patterns [29], extreme changes of viewpoints
[21, 30, 31], and illumination change [32, 33] because of
degradation in repeatability of feature point (keypoint)
extraction [21, 31]. This problem can be mitigated by
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using densely detected features on a regular grid [34, 35]
but their merit is only demonstrated in image retrieval
[32, 36] or image classification tasks [26, 34] that use
the features for global image representation and do not
require one-to-one feature correspondences as in SfM.
Only recently, SfM with densely detected features are
presented in [37]. DenseSfM [37] uses convolutional neu-
ral network (CNN) features as densely detected features,
i.e., it extracts convolutional layers of deep neural network
[38] and converts them as feature descriptors of keypoints
on a grid pattern (Section 3.1). As the main focus of [37]
is camera localization, the SfM architecture including nei-
ther dense CNN feature description and matching nor its
3D reconstruction performance is not studied in detail.

1.1 Contribution

In this work, we first review the details of the SfM pipeline
with dense CNN feature extraction and matching. We
then propose a keypoint relocalization that uses the struc-
ture of convolutional layers (Section 3.2) to overcome
keypoint inaccuracy on the grid resolution and compu-
tational burden of dense feature matching. Finally, the
performance of SfM with dense CNN feature using the
proposed keypoint relocalization is evaluated on Aachen
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Day-Night [37] dataset and additionally on Strecha [39]
dataset.

2 Related work

2.1 SfMand VisualSLAM

The state-of-the-art SfM is divided into a few mainstream
pipelines: incremental (or sequential) [4, 6, 40], global [8,
9, 41], and hybrid [10, 42].

VisualSLAM approaches, namely, LSD-SLAM [43] and
DTAM [44], repeat camera pose estimation based on
selected keyframe and (semi-)dense reconstruction using
the pixel-level correspondences in real-time. These meth-
ods are particularly designed to work with video streams,
i.e., short baseline camera motion, but not with general
wide-baseline camera motion.

Recently, Sattler et al. [37] introduces CNN-based Dens-
eSfM that adopts densely detected and described features.
But their SfM uses fixed poses and intrinsic parameters of
reference images in evaluating the performance of query
image localization. They also do not address keypoint
inaccuracy of CNN features. Therefore, it remains as an
open challenge.

2.2 Feature points

The de facto standard local feature, SIFT [11], is capa-
ble of matching images under viewpoint and illumination
changes thanks to scale and rotation invariant keypoint
patches described by histograms of the oriented gradi-
ent. ASIFT [21] and its variants [30, 31] explicitly generate
synthesized views in order to improve repeatability of key-
point detection and description under extreme viewpoint
changes.

An alternative approach to improve feature matching
between images across extreme appearance changes is
to use densely sampled features from images. Densely
detected features are often used in multi-view stereo [45]
with DAISY [46], or image retrieval and classification
[35, 47] with Dense SIFT [34]. However, dense features
are not spotlighted in the task of one-to-one feature cor-
respondence search under unknown camera poses due to
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its loss of scale, rotation invariant, inaccuracy of localized
keypoints, and computational burden.

2.3 CNN features

Fischer et al. [48] reported that, given feature positions,
descriptors extracted from CNN layer have better match-
ability compared to SIFT [11]. More recently, Schon-
berger et al. [49] also showed that CNN-based learned
local features such as LIFT [17], Deep-Desc [50], and Con-
vOpt [51] have higher recall compared to SIFT [11] but
still cannot outperform its variants, e.g., DSP-SIFT [16]
and SIFT-PCA [52].

Those studies motivate us to adopt CNN architecture
for extracting features from images and matching them
for SfM as it efficiently outputs multi-resolution features
and has potential to be improved by better training or
architecture.

3 The pipeline: SfM using dense CNN features
with keypoint relocalization

Our SfM using densely detected features mimics the
state-of-the-art incremental SfM pipeline that con-
sists of feature extraction (Section 3.1), feature match-
ing (Section 3.2 to 3.4), and incremental reconstruc-
tion (Section 3.5). Figure 1 overviews the pipeline.
In this section, we describe each component while
stating the difference to the sparse keypoint-based
approaches.

3.1 Dense feature extraction

Firstly, our method densely extracts the feature descrip-
tors and their locations from the input image. In the same
spirit of [53, 54], we input images in a modern CNN archi-
tecture [38, 55, 56] and use the convolutional layers as
densely detected keypoints on a regular grid, i.e., crop-
ping out the fully connected and softmax layers. In the
following, we chose VGG-16 [38] as the base network
architecture and focus on the description tailored to it, but
this can be replaced with other networks with marginal
modification.

Input images Feature extraction Tentative matching
using CNN
Section 3.1 Section 3.2

Keypoints Homography 3D reconstruction
relocalization RANSAC
Section 3.3 Section 3.4 Section 3.5

Fig. 1 Pipeline of the proposed SfM using dense CNN features with keypoint relocalization. Our SfM starts from dense feature extraction
(Section 3.1), feature matching (Section 3.2), the proposed keypoint relocalization (Section 3.3), feature verification using RANSAC with multiple
homographies (Section 3.4), and followed by 3D reconstruction (Section 3.5)
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As illustrated in Fig. 2, VGG-16 [38] is composed of five
max-pooling layers and 16 weight layers. We extract the
max-pooling layers as dense features. As can be seen in
Fig. 2, the convl max-pooling layer is not yet the same
resolution as the input image. We, therefore, also extract
convl_2, one layer before the convl max-pooling layer,
that has pixel-level accuracy.

3.2 Tentative matching

Given multi-level feature point locations and descriptors,
tentative matching uses upper max-pooling layer (lower
spatial resolution) to establish initial correspondences.
This is motivated by that the upper max-pooling layer
has a larger receptive field and encodes more seman-
tic information [48, 57, 58] which potentially gives high
matchability across appearance changes. Having the lower
spatial resolution is also advantageous in the sense of
computational efficiency.

For a pair of images, CNN descriptors are tentatively
matched by searching their nearest neighbors (L2 dis-
tances) and refined by taking mutually nearest neighbors.
Note that the standard ratio test [11] removes too many
feature matches as neighborhood features on a regularly
sampled grid tend to be similar to each other.

We perform feature descriptor matching for all the pairs
of images or shortlisted images by image retrieval, e.g.,
NetVLAD [53].

3.3 Keypoint relocalization

The tentative matching using the upper max-pooling lay-
ers, e.g., convs, generates distinctive correspondences but
the accuracy of keypoint position is limited by their spatial
resolution. This inaccuracy of keypoints can be mitigated
by a coarse-to-fine matching from the extracted max-
pooling layer up to convl_2 layer utilizing extracted inter-
mediate max-pooling layers between them. For exam-
ple, the matched keypoints found on the conv3 layer
are transferred to the conv2 (higher spatial resolution)
and new correspondences are searched only in the area
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constrained by the transferred keypoints. This can be
repeated until reaching convl_2 layer. However, this naive
coarse-to-fine matching generates too many keypoints
that may lead to a problem in computational and mem-
ory usage in incremental SfM step, especially, bundle
adjustment.

To generate dense feature matches with pixel-level accu-
racy while preserving their quantity, we propose a method
of keypoint relocalization as follows. For each feature
point at the current layer, we retrieve the descriptors on
the lower layer (higher spatial resolution) in the corre-
sponding K x K pixels!. The feature point is relocalized at
the pixel position that has the largest descriptor norm (L2
norm) in the K x K pixels. This relocalization is repeated
until it reaches the convl_2 layer which has the same
resolution as the input image (see also Fig. 3).

3.4 Feature verification using RANSAC with multiple
homographies

Using all the relocated feature points, we next remove
outliers from a set of tentative matches by Homography-
RANSAC. We rather use a vanilla RANSAC instead
of the state-of-the-art spatial verification [59] by taking
into account the spatial density of feature correspon-
dences. To detect inlier matches lying on several planes,
Homography-RANSAC is repeated while excluding the
inlier matches of the best hypothesis. The RANSAC
inlier/outlier threshold is set to be loose to allow features
off the planes.

3.5 3Dreconstruction

Having all the relocalized keypoints filtered by RANSAC,
we can export them to any available pipelines that per-
form pose estimation, point triangulation, and bundle
adjustment.

Dense matching may produce many confusing feature
matches on the scene with many repetitive structures, e.g.,
windows, doors, and pillars. In such cases, we keep only
the N best matching image pairs for each image in the

Input Image

conv2
Max Pooling 2
400x300x128 max

convl_2

conv3d
Max Pooling 3
/ 200%150x256 max
7 7 7 7 7
R s A ¥

conv4g
Max Pooling 4 ﬁﬂgygoohng 5

100x75x512 max : 50x37x512 max

AIIIIIIIIT/

Fig. 2 Features extracted using CNN. The figure summarizes blocks of convolutional layers of VGG-16 as an example of CNN architecture. Our SfM
uses the layers colored in red as features. For example, given an input image of 1600 x 1200 pixels, we extract 256 dimensional features of
200 x 150 spatial resolution from the conv3 max-pooling
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L2 nor map

Fig. 3 Keypoint relocalization. a A keypoint on a sparser level is relocalized using a map computed from descriptors’ L2 norm on an lower level
which has higher spatial resolution. It is reassigned at the position on the lower level which has the largest value in the corresponding K x K
neighborhood. By repeating this, the relocalized keypoint position in conv1_2 has the accuracy as in the input image pixels. b The green dots show
the extracted conv3 features points (top) and the result of our keypoint relocalization (bottom)

dataset based on the number of inlier matches of multiple
Homography-RANSAC.

4 Experiments

We implement feature detection, description, and match-
ing (Sections 3.1 to 3.4) in MATLAB with third-party
libraries (MatConvNet [60] and Yael library [61]). Dense
CNN features are extracted using the VGG-16 network
[38]. Using conv4 and conv3 max-pooling layers, feature
matches are computed by the coarse-to-fine matching fol-
lowed by multiple Homography-RANSAC that finds at
most five homographies supported by an inlier thresh-
old of 10 pixels. The best N pairs based on multiple
Homography-RANSAC of every image are imported to
COLMAP [6] with the fixed intrinsic parameter option for
scene with many repetitive structures. Otherwise, we use
all the image pairs.

In our preliminary experiments, we tested other lay-
ers having the same spatial resolution, e.g., using conv4_3
and conv3_3 layers in the coarse-to-fine matching but
we observed no improvement in 3D reconstruction. As a
max-pooling layer has a half depth dimension in compar-
ison with the other layers at the same spatial resolution,
we chose the max-pooling layer as the dense features for
efficiency.

In the following, we evaluate the reconstruction per-
formance on Aachen Day-Night [37] and Strecha [39]
dataset. We compare our SfM using dense CNN features
with keypoint relocalization to the baseline COLMAP
with DoG+RootSIFT features [6]. In addition, we also
compare our SfM to SfM using dense CNN without
keypoint relocalization [37]. All experiments are tested

on a computer equipped with a 3.20-GHz Intel Core i7-
6900K CPU with 16 threads and a 12-GB GeForce GTX
1080Ti.

4.1 Results on Aachen Day-Night dataset

The Aachen Day-Night dataset [37] is aimed for evaluat-
ing SfM and visual localization under large illumination
changes such as day and night. It includes 98 subsets of
images. Each subset consists of 20 day-time images and
one night-time image, their reference camera poses, and
3D points 2.

For each subset, we run SfM and evaluate the esti-
mated camera pose of the night image as follows. First,
the reconstructed SfM model is registered to the ref-
erence camera poses by adopting a similarity transform
obtained from the camera positions of day-time images.
We then evaluate the estimated camera pose of the night
image by measuring positional (L2 distance) and angular

trace(R,,(RT. , )—1
(acos( race®g Roigr) )) error.
Table 1 shows the number of reconstructed cameras.
The proposed SfM with keypoint relocalization (convl_2)

Table 1 Number of cameras reconstructed on the Aachen
dataset

DoG+ DenseCNN DenseCNN
RootSIFT [6] w/o reloc w/ reloc (Ours)
Night 48 95 96
Day 1910 1924 1944

The proposed method have the most number of reconstructed cameras for either
day or night images
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Fig. 4 Quantitative evaluation on the Aachen Day-Night dataset. The poses of night images reconstructed by the baseline DoG+RootSIFT [6] (red),
the DenseCNN without keypoint relocalization (green), and the proposed DenseCNN (blue) are evaluated using the reference poses. The graphs
show the percentages of correctly reconstructed camera poses of night images (y-axis) at positional (a) and angular (b) error threshold (x-axis)

can reconstruct 96 night images that are twice as many
as that of the baseline method using COLMAP with
DoG+RootSIFT [6]. This result validates the benefit of
densely detected features that can provide correspon-
dences across large illumination changes as they have
smaller loss in keypoint detection repeatability than a
standard DoG. On the other hand, both methods with
sparse and dense features work well for reconstructing
day images. The difference between with and without key-
point localization can be seen more clearly in the next
evaluation.

Figure 4 shows the percentages of night images recon-
structed (y-axis) within certain positional and angular
error threshold (x-axis). Similarly, Table 2 shows the
reconstruction percentages of night images for vary-
ing distance error thresholds with a fixed angular error
threshold at 10°. As can be seen from both evaluations, the
proposed SfM using dense CNN features with keypoint
relocalization outperforms the baseline DoG+RootSIFT
[6] by a large margin. The improvement by the proposed
keypoint relocalization is significant when the evalua-
tion accounts for pose accuracy. Notice that the SfM
using dense CNN without keypoint relocalization [37]
performs worse than the baseline DoG+RootSIFT [6] at
small thresholds, e.g., below 3.5 m position and 2° angular
error. This indicates that the proposed keypoint relocal-
ization gives features at more stable and accurate posi-
tions and provides better inlier matches for COLMAP
reconstruction which results 3D reconstruction in higher
quality.

Figure 5 illustrates the qualitative comparison result
between our method and the baseline DoG+RootSIFT [6].

4.2 Results on Strecha dataset

We additionally evaluate our SfM using dense CNN with
the proposed keypoint relocalization on all six subsets
of Strecha dataset [39] which is a standard benchmark
dataset for SfM and MVS. Position and angular error
between the reconstructed cameras and the ground truth

poses are evaluated. In our SfM, we take only feature
matches from the best N = 5 image pairs for each image
to suppress artifacts from confusing image pairs.

The mean average position and angular errors resulted
by our SfM are 0.59 m and 2.27°. Although these errors
are worse than those of the state-of-the-art COLMAP
with DoG+RootSIFT [6] which are 0.17 m and 0.90°, the
quantitative evaluation on the Strecha dataset demon-
strated that our SfM does not overfit to specific challeng-
ing tasks but works reasonably well for standard (easy)
situations.

5 Conclusion

We presented a new SfM using dense features extracted
from CNN with the proposed keypoint relocalization to
improve the accuracy of feature positions sampled on a
regular grid. The advantage of our SfM has demonstrated
on the Aachen Day-Night dataset that includes images
with large illumination changes. The result on the Strecha
dataset also showed that our SfM works for standard
datasets and does not overfit to a particular task although
it is less accurate than the state-of-the-art SfM with local
features. We wish the proposed SfM becomes a mile-
stone in the 3D reconstruction, in particularly challenging
situations.

Table 2 Evaluation of reconstructed camera poses (both
position and orientation)

DoG+ DenseCNN DenseCNN
RootSIFT [6] w/o reloc w/ reloc (Ours)
0.5m 15.31 5.10 18.37
1.0m 2561 1429 3367
5.0m 36.73 4592 69.39
10.0m 35.71 6122 81.63
20.0m 39.80 69.39 82.65

The numbers show the percentage of the reconstructed night images within given
positional error thresholds and an angular error fixed at 10°

The proposed method have the most number of reconstructed cameras for either
day or night images
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Fig. 5 Example of 3D reconstruction in the Aachen dataset. These figures show qualitative examples of SfM using DoG+RootSIFT [6] (@) and our dense
CNN with keypoint relocalization (b). Our method can reconstruct all the 21 images in the subset whereas the baseline DoG+RootSIFT [6] fails to
reconstruct it. As a nature of dense feature matching, our method reconstructs 42,402 3D points which are 8.2 times more than the baseline method

Endnotes

1We use K = 2 throughout the experiments.

2 Although the poses are carefully obtained with manual
verification, the poses are called as “reference poses” but
not ground truth.
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