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Abstract

investigated in previous gait recognition studies.

Performance evaluation

In this paper, we describe the world’s largest gait database with real-life carried objects (COs), which has been made
publicly available for research purposes, and its application to the performance evaluation of vision-based gait
recognition. Whereas existing databases for gait recognition include at most 4007 subjects, we constructed an
extremely large-scale gait database that includes 62,528 subjects, with an equal distribution of males and females, and
ages ranging from 2 to 95 years old. Moreover, whereas existing gait databases consider a few predefined CO
positions on a subject’s body, we constructed a database that contained unconstrained variations of COs being
carried in unconstrained positions. Additionally, gait samples were manually classified into seven carrying status (CS)
labels. The extremely large-scale gait database enabled us to evaluate recognition performance under cooperative
and uncooperative settings, the impact of the training data size, the recognition difficulty level of the CS labels, and
the possibility of the classification of CS labels. Particularly, the latter two performance evaluations have not been
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1 Introduction

Gait refers to the walking style of an individual, and can be
used as a behavioral biometric [28]. Compared with tradi-
tional biometric features, such as DNA, a fingerprint, face,
and iris, gait has many unique advantages. The key advan-
tage is that gait can be used to recognize an individual
at a distance from a camera without his/her cooperation,
even for a relatively low-resolution image sequence [36]
and low frame rate [25]. Therefore, gait has the potential
to be applied in many applications, such as access control,
surveillance, forensics, and criminal investigations from
footage from CCTV cameras installed in a public or pri-
vate space [4, 16, 19]. Recently, gait has been used as a
forensic feature, and there has already been a conviction
that has resulted from gait analysis [37].
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However, gait recognition has to overcome some
practical issues because of circumstances defined as
covariates, such as view, clothing, shoes, carried object
(CO), environmental context, aging, or mental condition
[30, 40]. These covariates should be fully studied for
further progress and the development of a practical and
robust gait recognition algorithm. To overcome these
issues, a common gait database that considers the above
covariates is essential. Among the aforementioned covari-
ates, CO is one of the most important because people
often need to carry objects in their daily lives, such as a
handbag, briefcase on the way to work, or multiple bags
after shopping.

There are some existing gait databases in the research
community that consider COs. However, they contain a
limited number of subjects and few predefined COs, and
they lack information about the positions and types of
COs. For example, CASIA gait dataset B [40] is composed
of 124 subjects and considers a bag as a CO, where
the bag was selected by a subject from a predefined set
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containing a knapsack, satchel, and handbag. Similarly, the
USF dataset [30] is composed of 122 subjects and con-
siders a briefcase as a CO; thus, there are at most two
options for a CO available, that is, with or without a brief-
case. Recently, a large dataset, the OU-ISIR Gait Database,
Large Population Dataset with Bag, 8 version, which con-
tains 2,070 subjects with various COs, was introduced in
[22]; however, it does not include detailed information
about COs.

With the growing data science trend, we always need a
large-scale dataset to efficiently solve a problem. Recently,
many sophisticated machine learning techniques, such as
deep learning (DL), have been developed, and they require
a large number of training samples because more data are
more important than a better algorithm [9]. However, few
large-scale databases are available for gait recognition, for
example, the OU-ISIR Gait Database, Large Population
Dataset [15] and Large Population Dataset with Bag, S
version [22], which consider 4,007 and 2,070 subjects,
respectively. Although these datasets for gait recognition
seem to be sufficient for a conventional machine learn-
ing algorithm (e.g., without DL), they are not sufficiently
large to efficiently conduct a study using a DL-based
approach.

In this study, we first propose an extremely large pop-
ulation gait database with a large variation of CO covari-
ates that will encourage the gait recognition community
to deeply research this practical covariate. Second, we
provide performance evaluations for gait recognition by
employing existing state-of-the-art appearance-based gait
representation. The contributions of this paper are sum-
marized as follows:

1. The proposed database! is the largest gait database in

the world and is constructed from 62,528 subjects
with an equal distribution of males and females, and

Table 1 Existing major gait recognition databases
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a wide range of ages. It is more than 15 times the size
of the existing largest dataset for gait recognition.

2. In the proposed database, there is no constraint on
type, quantity, and position of the CO. We considered
any real-life COs that are used in daily life (e.g.,
handbag, vanity bag, book, notepad, and umbrella) or
when traveling (e.g., backpack, luggage, and travel
bag). Additionally, the typical position labels of the
COs are manually annotated. It would be beneficial
to analyze the classification and gait recognition
difficulty with respect to these typical position labels.

3. We provide a set of evaluation experiments with
benchmark results using state-of-the-art gait
recognition algorithms. Particularly, experiments
related to COs have not been investigated in previous
gait recognition studies.

2 Related work

2.1 Existing gait recognition databases

In this section, we briefly describe the existing major
databases for gait recognition, which are summarized in
Table 1.

The USF dataset [30] is one of the most widely used gait
datasets and captured outdoors under different walking
conditions. It is composed of 122 subjects and considers a
briefcase as a CO, and as a result, at most two options for
samples (i.e., with or without a CO) are available.

The Soton small dataset [27] considers only three types
of bags (i.e., handbag, barrel bag, and rucksack) as COs
and the subject carries these bags in four ways. Because
this dataset contains a larger variation of CO covariates
than that of the USF dataset, it can be used for exploratory
CO covariate analysis for gait recognition [3].

The TUM-IITKGP [12] dataset contains unique covari-
ates, such as dynamic and static occlusion. Later,
TUM-GAID [13] dataset is constructed and it is the first

#Possible options Gender balance

Database #Subjects Types of CO for CO positions (male:female)
Soton dataset, small [27] 12 Handbag, barrel bag, rucksack Four N/A
USF dataset [30] 122 Briefcase One 41
CASIA dataset, B [40] 124 Knapsack, satchel, handbag Three 31
CASIA dataset, C [34] 153 Bag One 6:1
CMU Mobo dataset [10] 25 Ball One 12:1
TUM-IITKGP [12] 35 Backpack One N/A
TUM-GAID [13] 305 Backpack One 32
OU-ISIR, LP [15] 4,007 N/A N/A 11
OU-ISIR, LP with Bag, B version [22] 2,070 Unconstrained Unconstrained N/A
Proposed 62,528 Unconstrained Unconstrained 1:1
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multi-signal gait dataset to contain audio signals, RGB
images, and depth images by Microsoft Kinect.

CASIA dataset B [40] is constructed from 124 sub-
jects with and without a CO, and before capturing the
sequences with a CO, each subject chose a bag from a set
of the knapsack, satchel, or handbag that he/she liked. As
a result, there are at most four options of samples available
regarding COs (no bag, knapsack, satchel, and handbag).
CASIA dataset C [34] considers only a backpack as a CO,
and data was captured from 153 subjects using a ther-
mal infrared camera designed for the study of night gait
recognition.

OU-ISIR, LP with Bag, B version [22], is composed
of 2,070 subjects and considers unconstrained types and
positions of COs. However, information about the status
of COs, such as position, change of position within a gait
period, and quantity of COs, is unavailable.

To summarize, the aforementioned datasets are unsuit-
able not only for studying CO covariates but also for
taking advantage of modern machine learning (e.g., DL)
approaches. By comparing existing databases, the pro-
posed database contains unconstrained variations of COs
and the largest number of subjects, which is approx-
imately 200 times larger than the largest existing gait
database with COs, that is, TUM-GAID, and 15 times
larger than that without COs for gait recognition, that is,
OU-ISIR, LP.

We note that there exists a larger gait database [39] that
consists of 63,846 subjects. However, this database is only
used for age estimation and is not usable for gait recogni-
tion because only a single gait energy image (GEI) feature
is available for each subject.

2.2 Gait recognition approaches

In gait recognition, the appearance-based approach is
dominant, and GEI [11] is the most prevalent and fre-
quently used feature. Furthermore, some modified GEIs
have been introduced for robust gait recognition against
CO and clothing variation covariates, such as Gait
Entropy Image (GEnlI) [1], which is computed by calcu-
lating the Shannon entropy for every pixel of the GEL
Masked GEI (MGEI) [2], for which gait energies are
masked out when gait entropy is smaller than a certain
threshold; Gabor GEI [35]; and transformed GEI [18] with
a Gabor filter.

Appearance-based features, however, often suffer from
large intra-subject appearance changes because of covari-
ates. To gain more robustness, the most popular
approach is to incorporate spatial metric learning-based
approaches, such as linear discriminant analysis (LDA)
[29] and a ranking support vector machine (RankSVM)
[7]. Additionally, as a DL-based approach, a convolutional
neural network (CNN) [8, 32, 38] is also used for robust
gait recognition. Therefore, in this study, we consider
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metric learning-based approaches with a GEI feature to
evaluate the performance of the proposed database.

3 OU-ISIR large population gait database with
carried objects
3.1 Capture system
The proposed database was constructed from gait images
automatically collected by a gait collecting system called
Gait Collector [21]. The gait data were collected in
conjunction with an experience-based demonstration of
video-based gait analysis at a science museum (Miraikan),
and informed consent for purpose of research use was
obtained electronically. An overview of the capture system
is illustrated in Fig. 1. The camera was set at a distance
of approximately 8 m from the straight walking course
and a height of approximately 5 m. The image resolu-
tion and frame rate were 1280 x 980 pixels and 25 fps,
respectively. The green background panels and carpet
were arranged along the walking course for clear silhou-
ette extraction. The camera continuously captured video
during the museum opening hours, photo-electronic sen-
sors were used for detecting a subject walking past, and a
sequence of a target subject was extracted from the entire
video stream.

Each subject was asked to walk straight three times at
his/her preferred speed. First, the subject walked to the
other side of the course with his/her COs and then placed
these items into a CO storage box. Subsequently, he/she
walked twice more without COs in the same direction and
then picked up the COs and left the walking course. As a
result, we obtained three sequences for each subject. The
first sequence with or without COs (if he/she did not have
COs) is called the A; sequence, and the second and third
sequences without COs are called A; and A3 sequences,
respectively.

3.2 Gait feature generation

To obtain a GEI feature, we performed the following four
steps [15]: (1) A silhouette image sequence of a subject was
extracted using a chroma-key technique [31] (i.e., removal
of the green background area using HSV color space). (2)
Then, registration and size normalization of the silhou-
ette images were performed. First, the subject’s silhouette
images were localized by detecting the top, bottom, and
horizontal center (i.e., median) positions. Then, a moving-
average filter was applied to these positions. Finally, the
sizes of the subject’s silhouette images were normalized
according to the average positions so that his/her height
was 128 pixels. Furthermore, the aspect ratio of each
region was maintained, and as a result, we generated the
subject’s silhouette images of 88 x 128 pixels. (3) A gait
period was determined using normalized autocorrelation
[15] of the subject’s silhouette image sequence along the
temporal axis. (4) A GEI was constructed by averaging the
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: First sequence w/ or w/o CO

A,: Second sequence w/o CO

Aj: Third sequence w/o CO

CO storage

Fig. 1 lllustration of the data collection system
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subject’s silhouette image sequence over a gait period. If
several gait periods were detected from one walking image
sequence, then we chose a GEI that was nearest to the
center of the walking course.

3.3 Annotation of the carrying status

Because we did not constrain the subject in terms of the
type of CO, or where and how it was carried, it could be
carried in a variety of positions and orientations. Thus, it
was difficult to categorize the position exactly. For sim-
plicity, we first divided the area in which the COs could
be carried into four regions with respect to the human
body: side bottom, side middle, front, and back, as shown
in Fig. 2. However, some subjects did not carry a CO,
some carried multiple COs in multiple regions, and others
changed a CO’s position within a GEI gait period.

For each GEI every fourth frame within a gait period
was manually checked to annotate the carrying status
(CS). As a result, a total of seven distinct labels for the CS
were annotated in our proposed database. A summary of
the denotation of the CS labels is shown in Table 2 and
some examples of CS labels in Fig. 3. Note that, because

only the samples for the A; sequence may have contained
COs, the annotation process was only applied to the A;
sequence for each subject.

3.4 Database statistics

Because of the good design of the system, the world’s
largest database for gait recognition with COs, composed
of 62,528 subjects with ages ranging from 2 to 95 years,
was constructed. Detailed distributions of the subjects’
genders by age group are shown in Fig. 4. The gender
distribution was well-balanced for males and females

Front region
Side middle region

Fig. 2 Four approximating regions for a person in which a CO is being

carried




Uddin et al. IPSJ Transactions on Computer Vision and Applications

Table 2 Carrying status label

CS label Explanation

NoCO No carried object

SbCO CO(s) being carried in the side bottom region
SmCO CO(s) being carried in the side middle region

FrCO CO(s) being carried in the front region

BaCO CO(s) being carried in the back region

MuCO COs being carried in multiple regions

CpCo CO(s) with position being changed from one region

to another within a gait period

for each age group, which is a desirable property for the
comparison of gait recognition performance between
genders [20].

Improper GEIs were excluded manually from the final
database if a subject stopped walking for a while at the
center of the walking course, changed walking direc-
tion before the end of the walking course, continued to
carry COs in the Ay and A3 sequences, or exited from
the capture system after finishing the first sequence, A;.
As a result, each subject had at most three sequences.
We, therefore obtained a database for publication that
included 60,450 subjects for the A; sequence, and 58,859
and 58,709 subjects for Ay and A3 sequences, respectively.

(2018) 10:5
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The distributions of the CS labels are shown in Fig. 5.
Most of subjects carried multiple COs in multiple regions
(i.e., with MuCO) and the subjects equally liked to carry
COs at the front (ie, with FrCO) and back regions
(i.e., with BaCO). Additionally, the subjects equally did
not like to carry COs (i.e., with NoCO). Moreover, few
subjects changed their CO positions from one region to
another (i.e., with CpCO); similarly, few subjects carried
COs in the side middle region. Meanwhile, the number
of subjects who carried COs in the side bottom region
(i.e., with SbCO) was approximately twice as many
as those who carried COs in the side middle region
(i.e., with SmCO).

4 Performance evaluation

4.1 Overview

These experiments were designed to address a variety of
challenges for COs and provided benchmark results for
a competitive performance comparison of various algo-
rithms. Specifically, we considered two sets of popular
experiments for gait recognition: cooperative and unco-
operative settings and impact of the number of training
subjects. Additionally, we designed two more sets of orig-
inal experimental settings to study the impact of COs:
difficulty level of the CS labels and classification of the CS
labels. To the best of our knowledge, they have not been
investigated before.
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Fig. 4 Distribution of genders by age group

4.2 Evaluation criteria
We evaluated the accuracy of gait recognition in two
modes: identification and verification. We used the
cumulative matching curve (CMC) for identification
and the receiver operating characteristic curve with
z-normalization (z-ROC), which indicates the trade-off
between the false rejection rate (FRR) of genuine samples
and false acceptance rate (FAR) of imposter samples with
varying thresholds for verification. Additionally, more
specific measures for each evaluation mode were used
to evaluate performance: Rank-1 and Rank-5 for identi-
fication, and the equal error rate with z-normalization
(z-EER), FRR at 1% FAR with z-normalization (z-FRR;y),
and area under curve with z-normalization (z-AUC) for
verification.

Additionally, we used the correct classification rate
(CCR) to evaluate accuracy for the classification of the CS
label experiment.

4.3 Benchmarks

There are various state-of-the-art appearance-based
methods available for gait recognition in the literature,
as mentioned in the Subsection 2.2. We selected seven
benchmark methods from the wide variety of appearance-
based gait recognition methods to validate the proposed
database, which are summarized as follows:

18000
15000
12000
9000
6000
3000

# Subject

NoCO SbCO SmCO FrCO BaCO MuCO CpCO
Fig. 5 Distribution of the CS label

Page 6 of 11

e The first benchmark used the direct matching

method [15], which is a non-training-based approach
that calculates the dissimilarity using the Ly distance
between two GEIs. The method is denoted by DM in
this paper.

The second benchmark used LDA [29], which is
widely exploited in gait recognition [14, 18].
Specifically, we first applied principal component
analysis (PCA) to an unfolded GEI feature vector to
reduce its dimensions, and subsequently applied LDA
to obtain a metric to recognize an unknown sample.
The benchmark is denoted by PCA_LDA in the
experiment discussions.

The third benchmark used the gait energy response
function (GERF) [18], which transforms GEI into a
better discriminative feature. Then, a Gabor filter was
applied to the transformed GEI, and LDA was
subsequently applied, followed by PCA. The
benchmark is denoted by GERF in the experiment
discussions.

A support vector machine (SVM) [6] is a widely used
method for multi-class classification. Therefore, we
used SVM in a benchmark, with a third-degree
polynomial kernel for the classification of the CS
labels. The benchmark is denoted by mSVM in the
experiment discussions.

RankSVM [7] is a well-known extension of a SVM
that is used for gait recognition in the literature

[23, 24, 26]. Therefore, we used RankSVM in a metric
learning-based benchmark. In the training phase, we
set the positive and negative feature vectors as the
absolute difference between the genuine and
impostor pair of GEIs, respectively. By considering
the computational cost and memory, we selected
randomly nine impostor pairs against a genuine pair.
The benchmark is denoted by RSVM in the
experiment discussions.

GEINet [32] is based on a simple CNN network
architecture for gait recognition, in which one input
GEI feature is fed into the network, and the soft-max
value from the output of the final layer (fc4), in which
the number of nodes is equal to the number of
training subjects, is regarded as the probability that
the input matches a corresponding subject. The
benchmark is denoted by GEINet in the experiment
discussions.

Siamese [8] is also based on CNN network
architecture, in which two input GEI features are
used to train the two parallel CNN networks with
shared parameters for gait recognition [33, 41]. The
output of the final layer (fc4) is regarded as a feature
vector for each input. A contrastive loss was used for
the genuine pair, whereas a so-called hinge loss was
used for the imposter pair. Note that, for training the
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network, similar to RSVM, we set nine imposter pairs
against a genuine pair. The benchmark is denoted by
SIAME in the experiment discussions.

4.4 Cooperative and uncooperative settings

In this section, the impacts of the cooperative and unco-
operative settings for recognition accuracy are investi-
gated. The implicit assumption for the cooperative setting
is that the covariate condition is consistent for all samples
in a gallery set. However, it is difficult to collect such data
in a real scenario because of the uncooperative and non-
intrusive traits of gait biometrics. Therefore, in addition
to the cooperative setting, a more natural uncooperative
setting was used in which the covariate condition was
inconsistent in the gallery set [24].

For the settings, we prepared a subject list that included
58,199 subjects who had a sample in the A; sequence and
a sample in either the A, or A3 sequences for each subject.
Then, the subject list was divided randomly by subject id
into two sets: a training set (29,097 subjects) and test set
(29,102 subjects) equally for each CS label. Then, the test
set was divided into two subsets: gallery set and probe
set. For the cooperative setting, we used samples from the
Ay or Az sequences (i.e., without COs) in the gallery and
the sample from the A; sequence was used as a probe.
While in the uncooperative setting, samples of each sub-
ject were randomly separated into a gallery set and probe
set so that the gallery contained a mix of samples that con-
sisted of A; and A; or A3 sequences. The training sets
for the cooperative and uncooperative settings were pre-
pared in the same manner to reflect the corresponding
test sets.

The results for CMC and z-ROC are shown in Fig. 6, and
Rank-1, Rank-5, z-FRR;¢, z-EER, and z-AUC are shown in
Table 3. From these results, the recognition accuracy for
the cooperative setting is better than that of the uncoop-
erative setting for most of the benchmarks.

(2018) 10:5
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Among the benchmark methods, the non-training-
based approach DM achieved the worst performance.
Because DM did not apply a technique against the covari-
ate, it was directly affected by the spatial displacement
of the corresponding body parts in GEIs caused by the
CS difference. By contrast, the accuracy of the training-
based approaches was better than that of DM because
the dissimilarity metrics were optimized with the training
dataset.

Regarding the LDA-based metric learning benchmarks,
both PCA_LDA and GERF worked reasonably well and
their performances were very similar. However, GERF
was slightly better for the uncooperative setting, whereas
PCA_LDA was slightly better for the cooperative setting,
as shown in Fig. 6 and Table 3. We believe that LDA per-
formed better recognition for both benchmarks by reduc-
ing intra-subject appearance variation while increasing
inter-subject variations. Furthermore, in GERF, before
applying LDA and PCA, a pre-processing technique was
performed on GEL for example, transforming a pixel value
for a better discriminative feature. This transformation
in GERF was not effective for the cooperative setting;
however, it worked well for the uncooperative setting.
As a result, the performance of GERF was better for the
uncooperative setting.

Regarding RSVM, it is reported in the literature that
RankSVM works better in an identification scenario
[24, 36] because it focuses more on the relative distance
between two classes and considers the probe-dependent
rank statistics. However, it did not work well in our set-
ting. We believe the cause of this weak performance was
that, as mentioned in Section 4.3, we could only set the
number of impostor pairs at nine against a genuine pair,
and hence, RankSVM could not effectively maximize the
inter-subject variation. This is one of the important disad-
vantages of the RankSVM method for an extremely large
training dataset.

1.0

Identification rate

/ —Coop_DM Uncoop_DM
0.2 |/~ —Coop_PCA_LDA Unoop_PCA_LDA
" —Coop_GERF - -Uncoop_GERF
0.1 ——Coop_RSVM = -Uncoop_RSVM
. Coop_GEINet Uncoop_GEINet
0 0 —— Coop_SIAME - ==-Uncoop_SIAME
0 10 20 30 40 50 60 70 80 90 100
Rank

a) CMC curves

z-normalization

0.0
0.0 0.1 0.2 0.3 0.4 0.5
FAR
b) ROC curves with z-normalization

Fig. 6 CMC and ROC curves for cooperative and uncooperative settings. Legend marks are common in all graphs. a CMC curves. b ROC curves with
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Table 3 Rank-1/5 [%], z-FRRy9, z-EER [%], and z-AUC [%] for cooperative (Coop) and uncooperative (Uncoop) settings

Benchmark Rank-1 Rank-5 7-FRR194 z-EER z-AUC
Coop Uncoop Coop Uncoop Coop Uncoop Coop Uncoop Coop Uncoop

DM 17.7 159 234 205 56.3 68.0 18.5 299 10.1 232
PCA_LDA 40.8 31.4 53.0 413 21.2 34.3 7.4 14.4 2.4 8.0
GERF 385 31.2 509 42.2 306 34.6 8.0 11.4 27 5.1
RSVM 24.7 183 356 276 34.1 439 9.6 14.7 35 8.2
GEINet 223 185 325 269 34.8 433 1.3 14.7 4.5 7.1
SIAME 49.8 50.3 69.7 70.5 5.7 5.4 25 24 0.3 0.3

Bold and italic bold fonts indicate the best and second-best benchmarks, respectively

Regarding CNN-based benchmarks, although GEINet
did not work well, SIAME achieved the best results with
a large margin compared with other benchmarks. We
believe the cause of the weak performance for GEINet was
that the parameter of the one-input CNN architecture was
trained so as to maximize the soft-max of the output layer
(fc4) node for the same subject’s input GEIs. Therefore,
it emphasized minimizing only intra-subject appearance
variation. However, only two sample GEIs for each subject
were used in these experiments, which was not sufficient
to train a good parameter. By contrast, the two-input
CNN architecture Siamese in SIAME was trained so that
it minimized the variation between the intra-subject and
maximized the variation between inter-subject GEIs. Fur-
thermore, there was no accuracy deviation between the
cooperative and uncooperative settings for SIAME. We
believe that the deep neural network structure of Siamese
was sufficiently powerful to manage CO covariates given
a very large training dataset.

4.5 Difficulty level of the CS labels

The purpose of this experiment was to analyze the dif-
ficulty level of the CS labels based on recognition per-
formance. To analyze the difficulty level, we used the
same protocol as the cooperative setting, except the probe
set was divided into seven subsets according to the CS
label, whereas the gallery set was unchanged for a fair
comparison.

The results for the Rank-1 identification rate and
z-EERs are shown in Fig. 7. NoCO and CpCO achieved the
best and worse labels respectively, whereas the remaining
labels (i.e., SbCO, SmCO, FrCO, BaCO, and MuCO) were
approximately at the middle difficulty level. We discuss
the evaluation results by considering the static shape and
dynamic motion of the gait feature.

NoCO was the best label for any benchmark, and this is
reasonable because there was no CO between the gallery
and probe of the same subject and, as a result, shape and
motion were stable.

Regarding the middle-level difficulty labels, the motion
and shapes deviated by different amounts. For example,

for SbCO and SmCO, subjects frequently carried small
and lightweight COs, which were occluded by the sub-
ject’s body very often, as shown in Fig. 3. Therefore, the
COs did not have much of an impact on the shape. For
the case of BaCO, subjects typically carried a large CO,
such as a backpack that was secured by two straps that fit-
ted over the shoulders, and thus the position of the CO
was fixed and stable within a gait period. However, the
large CO heavily affected the shape and posture, as shown
in Fig. 3. Similarly for MuCO, subjects typically carried
a large backpack-type CO together with other types of
COs that were carried in other regions. Although the CO
position of the back region was constant, other CO posi-
tions were random; thus, GEI samples for MuCO were
largely affected not only by shape but also by motion. As a
result, the recognition performance of this label was worse
than that of BaCO. Regarding FrCO, the subjects typically
carried a lightweight object by hand in the front region.

80

B NoCO mShCO MSmCO EFrCO BaCO " MuCO mCpCO

Rank-1 [%]

DM PCA_LDA GERF SIAME

a) Rank-1

RSVM GEINet

H NoCO EShCO MSmCO EFrCO BaCO " MuCO mCpCO

DM PCA_LDA GERF SIAME

b) 2-EER

Fig. 7 Rank-1 identification rate and z-EERs for the difficulty level of
CS labels. a Rank-1. b z-EER

RSVM GEINet
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Unlike BaCO, the CO position was not stable, and typi-
cally both hands were required to hold the CO in the front
region. Therefore, the GEI samples of FrCO were affected
slightly by shape and fairly affected by motion.

Regarding CpCO, the CO position was random in any
region within a gait period because of the randomly
changing position from one region to another. There-
fore, GEI samples for CpCO were severely affected by the
motion feature, in addition to shape. As a result, CpCO
was the most difficult label.

4.6 Impact of the number of training subjects

It is well-known that the performance of a machine
learning-based method, particularly modern machine
learning, depends on a variety of training samples. In a
specific scenario, such as our case, this variety can be
expressed by the number of subjects. In this section, the
impact of the number of training subjects on recognition
performance is investigated.

In the experiment, we chose the cooperative setting of
Section 4.4 and selected the best benchmark, that is, the
CNN-based benchmark SIAME. Then, we prepared the
training set for 100, 200, 500, 1000, 2000, 5000, and 10,000
subjects randomly from the entire training set (29,097),
and the test set was unchanged.

The results for Rank-1 identification rate and z-EERs
are shown in Fig. 8. The accuracy was better for a larger
number of training subjects. For example, z-EER reduced
by approximately 13% when the number of training sub-
jects increased from 100 to 29,097, whereas the rank-1
identification rate increased by approximately 44%.

The above results clearly demonstrate the importance
of the number of training subjects, and a large database is
essential.

4.7 Classification of the CS labels

In previous sections, we presented our evaluations of sub-
ject recognition based on gait, and in this section, we
evaluate a different recognition problem, that is, the clas-
sification of the CS labels based on the gait feature. There

—0—Rank-1 = <@=<7-EER

0
100 200 500 1000 2000 5000 10000 29097

The number of training subjects (in log-scale)

Fig. 8 Relationship between the number of training subjects and
recognition accuracy for SIAME
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could be numerous applications such as, the detection
of suspicious events, such as bag-prohibited area incur-
sion and locating the person with a backpack. However,
there is no standard gait-based CO database with available
labeling information about the position and type of CO.
Thus, most existing work in the gait recognition literature
detects a CO using the gait feature [5, 17, 35]; however,
they only classify with or without a CO. We believe that to
overcome such a limitation, our proposed database can be
used as a benchmark database for the detection and clas-
sification of CO positions because of the available labeling
information of the CO.

To evaluate the performance of the classification of the
CS labels, we divided the number of subjects for each
label into a training set and test set equally. Because the
number of training subjects for each label was not the
same, we equalized the number of training subjects for
all labels by considering the smallest number of training
subjects for a label, that is, for CpCO (1,300 subjects).
For each subject, only the GEI of the A; sequence was
used. Then, we trained the training-based benchmarks
using the equalized training set. For testing, each sam-
ple of a CS label was matched against all the available
samples of the training set. To predict the CS label for
each test sample, majority voting was used for mSVM [6]
and the mean distance to a class was used for all other
benchmarks.

The CCR results of all CS labels for each benchmark
are shown in Fig. 9. The confusion matrices for the
best and second-best benchmarks, which were SIAME
and mSVM, respectively, are shown in Table 4 for all
labels as an average accuracy. The classification accuracy
for each label was quite different and depended on the
benchmark.

Regarding the performance of benchmark methods,
SIAME and mSVM consistently worked for each label,
as shown in Fig. 9. For SIAME, as already mentioned in
Section 4.4, the Siamese network was trained by minimiz-
ing the distance between intra-labels and maximizing the
distance between inter-labels. Even mSVM used a shal-
low machine learning approach (i.e., SVM), but it worked
well. We believe the cause is that multi-class SVM [6]
constructed multiple binary classifiers (e.g., K(K — 1)/2

H DM mPCA_LDA = GERF B RSVM E mSVM = GEINet m SIAME

NoCO
Fig. 9 CCRs of the CS labels

SbCO  SmCO FrCO BaCO MuCO CpCO
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Table 4 Confusion matrix for the classification of the CS labels

a SIAME
Predicted Tabel
Sb [ Sm Fr [ Ba Mu
N DY/ SEll 1.6 0.5
6.1 2.5 0.9 200
B2¥ 135 124 | 10.2
72.8

=

[T.1 11.8
Fr 38 2.6 74
Ba 2.4 0.8 4.5
Mu 0.9 3 519

—{\O o0 | —f A
N G —f —

Actual label
1%

N

Cp | 29 66 | 62 2030 44

b msSvMm
Predicted label
_ [ Sm Fr [ Ba Mu Cp
2 1 IT5 | 23 [ 0.6 .8
= IS : 1.0 [ 1.6 1.2 0.9 24
S [Sm | I&T IL.7 860N 98 122 | 42 | 80
S[F | 107 24 [ 97 ¥ 05 1.7 | 147
" [Ba | 53 1.3 6.8 | 0.2 10.6 | 1.0
Mu | 33 43 | 102 | 79 7 6.9
Cp | 82 70 | 1.8 (304 79 | 82 [ 265

No: NoCO; Sb: ShCO; Sm: SmCO; Ba: BaCO: Mu: MuCO; Fr: FrCO;
Cp: CpCO.

classifiers for K classes), one for each pair of classes, and
finally identified a class based on majority voting. By con-
trast, the remaining benchmark had a similar tendency
to the cooperative and uncooperative settings, such as
PCA_LDA, and GERF achieved nearly equal accuracy.

As for the classification accuracy of each label, NoCO
and BaCO worked well because there was no CO in
NoCO, and the shape and position of the CO were sta-
ble in BaCO. For SIAME, the CCRs were 76.8 and 78.9%
for NoCO and BaCO, respectively, as shown in Table 4.
For the case of SbCO and FrCO, the position and shape
of the COs were fairly distinguished for other labels, and
therefore, the classification accuracy of these labels was
reasonable and nearly equal. However, SbCO was slightly
confused with NoCO because of the shape similarity
with respect to the upper part of the GEIs. As a result,
sometimes samples of SbCO were misclassified as NoCO
(see Table 4).

For the cases of SmCO, MuCO, and CpCO, the GEI fea-
tures were not stable, and as a result, sometimes samples
of these labels were misclassified as other labels. Because
of the occlusion of COs with the subject’s body for SmCO,
the GEI feature was confused with that of SbCO, NoCO,
and BaCO, depending on the part of the COs that was
occluded, as shown in Fig. 3, and thus, samples were
misclassified as SbCO, NoCO, and BaCO (see Table 4).
Similarly, for the case of MuCO, it was confused with
BaCO, because, as already discussed in Section 4.5, sub-
jects typically carried, for example, a backpack in the back
region together with a small object in other regions in
MuCo, as shown in Fig 3. Additionally, for the case of
CpCO, subjects usually changed the CO’s position from
one region to another region through the front using the
hands. Therefore, the GEI feature of CpCO was slightly
confused with that of FrCO.
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5 Conclusion and future work

In this paper, we presented a gait database that consisted
of an extremely large population with unconstrained types
and positions of COs, and presented a performance eval-
uation for vision-based gait recognition methods. This
database had the following advantages over existing gait
databases: (1) the number of subjects was 62,528, which
was more than 15 times greater than the largest existing
database for gait recognition; and (2) the CO positions
were manually annotated, and gait samples were classified
as seven distinct CS labels.

Together with the database, we also conducted four per-
formance evaluation experiments. The results provided
several insights, such as estimating the difficulty level
among annotated CS labels based on recognition perfor-
mance and the classification accuracy for CS labels.

Further analysis of gait recognition performance and
the classification of the CS labels using our database is
still needed. For example, we can evaluate the perfor-
mance using more sophisticated and powerful DL-based
approaches to gait recognition, which typically require an
extremely large number of training samples but achieve
state-of-the-art performance.

Endnote
! The proposed database is an extension of the large-
scale dataset that was introduced in [22].
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