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Abstract

on the topic.

In this paper, we describe the world’s largest gait database, the “OU-ISIR Gait Database, Large Population Dataset with
Age (OULP-Age)” and its application to a statistically reliable performance evaluation of gait-based age estimation.
Whereas existing gait databases include only 4016 subjects at most, we constructed an extremely large-scale gait
database that includes 63,846 subjects (31,093 males and 32,753 females) with ages ranging from 2 to 90 years old.
Benchmark algorithms of gait-based age estimation were then implemented to evaluate statistically significant
performance differences. Additionally, the dependence of gait-based age estimation performance on gender and age
group, in addition to the number of training subjects, was investigated to provide several insights for future research
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1 Introduction

Gait is one of the most popular behavioral biometrics
and has advantages over other physiological biometric
cues (e.g., DNA, fingerprints, irises, and faces) in terms
that it is difficult to imitate and obscure. Additionally, it
can be authenticated at a large distance from a camera
(e.g., closed-circuit television (CCTV) installed in pub-
lic) because it works even with relatively low-resolution
images [1] without subject cooperation. Gait recognition
has therefore attracted much attention in many applica-
tions for surveillance and forensics [2—4].

Whereas extensive studies on human gait [1, 5-10]
mainly focus on person authentication and identifica-
tion, that is, hard biometrics, the recognition of other
attributes, such as gender and age, that is, soft biometrics
[11], is also important because they could help to both
enhance surveillance capabilities [12, 13] and develop
potential applications, such as automatic customer count-
ing by age group and gender for marketing research [11].

*Correspondence: makihara@am.sanken.osaka-u.acjp

The Institute of Scientific and Industrial Research, Osaka University, 8-1
Mihogaoka, Ibaraki, 567-0046 Osaka, Japan

Full list of author information is available at the end of the article

@ Springer Open

Gait-based soft biometrics also involve a wide research
area, such as gender classification [14-21], age group
classification [22—25], age estimation [11, 26—28], and eth-
nicity classification [26, 29]. Among them, gait-based age
estimation is one of the challenging topics; however, it has
high application potential (e.g., automatic access control
to prevent people of an unpermitted age from access-
ing certain sites and specific human-computer interaction
applications).

Compared with face-based age estimation [30-40],
there are far fewer studies [11, 26—28] on gait-based age
estimation. One of the reasons for this is that existing gait
databases [5, 41—44] have been insufficient in terms of
the number of subjects, in addition to age variation and
balance, which are essential aspects for the statistically
reliable evaluation of gait-based age estimation [11]. The
only exception is the OU-ISIR Large Population (OULP)
dataset [45], which includes 4,016 subjects with ages rang-
ing from 1 to 94 years old. The OULP dataset, however,
still suffers from a shortage of subjects, especially for
ages over 50 years old, which may significantly affect the
performance of age estimation.

To overcome these defects, we constructed an extremely
large-scale gait dataset, the OU-ISIR Gait Database, Large
Population Dataset with Age (OULP-Age), which includes
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more than 60,000 subjects, with a competitive range of
ages and fewer age biases than the OULP dataset. To the
best of our knowledge, this is the largest gait dataset in
the world (i.e., more than 10 times the number of sub-
jects contained in the OULP dataset), which allows us
to evaluate the performance of age estimation in a more
statistically reliable manner and demonstrate the effects
of gender and age group. We demonstrated our dataset’s
validity through experiments with gait-based age estima-
tion benchmark algorithms and investigated the depen-
dences of age estimation performance on gender and age
group, in addition to the number of training subjects. Note
that, in this paper, we do not aim to propose a techni-
cally novel gait-based age estimation method, but aim to
provide a gait database and suitable set of performance
evaluation results that contribute to the video-based gait
analysis research community.

The outline of the paper is as follows. In Section 2,
we review existing gait databases and related work on
gait-based age estimation. In Section 3, we describe
the construction of our dataset. We briefly introduce
the gait-based age estimation benchmarks in Section 4,
and present various performance evaluations using
our dataset in Section 5. Finally, we conclude this
paper in Section 6 and discuss future work on the
subject.

2 Related work

2.1 Gait databases

Existing major databases are summarized in Table 1, with
brief descriptions given below.

The SOTON databases are composed of a small pop-
ulation dataset [41], large population dataset [46], and
SOTON Temporal [42]. The SOTON small database is
used to explore gait recognition under covariates such
as views, shoes, clothing, carriage, and walking speed.

Table 1 Existing major gait databases
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The SOTON large database was the first gait database to
contain over 100 subjects, walking on a track indoors and
outdoors, and on a treadmill, who were observed from
two views. SOTON Temporal [42] contains the largest
variations with respect to time elapse, which is up to one
year. The SOTON databases enable the investigation of
the effects of various covariates on gait recognition per-
formance; however, age information is not included, and
hence cannot be used for the study of gait-based age
estimation.

The USF dataset [5] is one of the most frequently used
gait databases and is composed of 122 subjects (85 males
and 37 females) with ages ranging from 19 to 59 years
old, who walked outdoors under a variety of covariates,
including view, surface, shoes, bags, and time elapse. This
database is suitable for the evaluation of which covariate
significantly impacts gait recognition performance [47]
and can be used for the analysis of gait-based age esti-
mation. However, the limited number of subjects, and
significant biases in terms of gender and age, may make
the evaluation of age estimation inadequate.

CASIA dataset A [48] is the initial dataset of the
CASIA databases and contains a small number of subjects
with view variations. By contrast, CASIA dataset B [43]
is widely used because it includes multiviews, different
clothing, and carrying status. CASIA dataset C [49] con-
sists of the largest number of subjects among the CASIA
databases, and the subjects were captured in an outdoor
night scenario, with walking speed and carriage variations.
The CASIA databases, however, cannot be used to con-
duct experiments on age estimation because of the lack of
age information.

OU-ISIR Treadmill datasets A [50] and B [51] con-
tain the largest speed variations (i.e., from 2 to 10 km/h
at 1 km/h interval), and clothing variations (i.e., 32
combinations), and therefore are suitable for evaluating

Database #Subjects Age Covariates Total video time length [h]
SOTON Small database [41] 12 N Y -
SOTON Large database [46] 115 N Y -
SOTON Temporal [42] 25 N Y -
USF dataset [5] 122 Y Y -
CASIA dataset A [48] 20 N Y -
CASIA dataset B [43] 124 N Y -
CASIA dataset C [49] 153 N Y -
OU-ISIR Treadmill dataset A [50] 34 N Y 0.9
OU-ISIR Treadmill dataset B [51] 68 N Y 46
OU-ISIR Treadmill dataset C [24] 200 Y Y 83
OU-ISIR Treadmill dataset D [52] 185 N Y 0.6
OULP dataset [45] 4016 Y N 8.1
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speed-invariant and clothing-invariant gait recognition.
The OU-ISIR Treadmill dataset C [24] includes 200 sub-
jects (100 males and 100 females) from 25 views, with ages
ranging from 4 to 75 years old, and it can be used for both
view-invariant gait recognition and age estimation. OU-
ISIR Treadmill dataset D [52] is composed of 185 subjects
with various degrees of gait fluctuations (i.e., differences
in the same phase across periods). The OULP dataset
[45] contains the largest number of subjects (i.e., 4016)
among all existing databases, with ages ranging from 1 to
94 years old, and it also has a well-balanced gender ratio.
Covariates were excluded for the estimation of the upper
limit of the performance of gait recognition, in addition
to gait-based age estimation with relatively high statistical
reliability.

As observed from the above, a few gait databases can
be used for the evaluation of gait-based age estimation,
and are inadequate in terms of the number of subjects,
in addition to gender and age balances, when compared
with existing face databases (e.g., MORPH database [53]),
which may introduce bias into the evaluation results
[45]. Therefore, one of the important contributions of
this study is to construct a significantly large-scale gait
database with a wide age variation and good balance of
genders and age groups to allow the performance evalu-
ation of gait-based age estimation in a more statistically
reliable manner.

2.2 Gait-based age estimation

In the field of gait-based age group classification, Davis
[22] classified children (3-5 years old) and adults
(30-52 years old), and Begg et al. [23] classified young
people (28.4 years old on average and 6.4 years standard
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deviation) and the elderly (69.2 years old on average and
5.1 years standard deviation). In [24], four age groups,
that is, children (under 15 years old), adult males, adult
females, and the elderly (over 65 years old) were clas-
sified. Chuen et al. [25] classified children and adults
using the OULP dataset [45], in addition to investigating
the correlation between gait features (e.g., stride length,
body length, and head-to-body ratio) among children and
adults.

For gait-based age estimation, Makihara et al. [11]
introduced a baseline algorithm using Gaussian process
regression (GPR) [30], which has been applied by a state-
of-the-art face-based age estimation [32], and further
used a GPR with an active set method [54] to reduce
the computational time for online demonstration in [55].
Lu et al. [27] proposed a multilabel-guided subspace
(MLG) to better characterize and correlate the age and
gender information of subjects, and in [28], they pro-
posed an ordinary preserving manifold analysis approach
to seek a low-dimensional discriminative subspace for age
estimation tasks.

More details of the aforementioned benchmark algo-
rithms can be found in Section 4, and experiments were
conducted with the benchmarks to demonstrate the valid-
ity of our database in Section 5.

3 OU-ISIR Gait Database, Large Population
Dataset with Age

3.1 Gait measurement system

An overview of our gait measurement system is shown

in Fig. 1, which was introduced in detail in [55]. Each

participant walked along the course from left to right at

his/her own preferred speed without any carriage, which

9 m (approx.)

........... : Photo-electronic sensor

Green chroma-key %
background for )

Walking course

R . N
silhouette extraction AN

Fig. 1 Overview of the gait measurement system and captured image sample
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allows us to investigate the upper bound of gait-based age
estimation performance.

A USB camera (PointGrey, FMVU-13S2C-CS) was
placed at 90° azimuth angle to the walking course, so
as to capture images from a side view that obviously
reflect the appearance differences among different ages in
a human’s silhouette (e.g., middle-age spread and stoop
in elderly can be clearly observed from a side view).
In addition, because the capturing time is short (i.e.,
2.5 s) and the distance from a camera to the walk-
ing course is not so near (i.e., approx. 4-m distance),
a viewing angle change within each image sequence is
relatively small. Moreover, because photo-electronic sen-
sors were installed to determine the start time for cap-
ture, viewing angle differences among image sequences
is small enough. Consequently, the viewing angles are
almost constant within each image sequence and among
image sequences, and thus we think there is no neces-
sity to compensate the viewing angle difference for
captured images.

Asaresult, a 2.5-s walking image sequence was captured
for each subject, with an image size of 640 x 480 pixels
and frame rate of 30 fps. Additionally, a green chroma-
key background was arranged along the walking course to
enable clear silhouette extraction.

3.2 Data collection and statistics

The dataset was collected in conjunction with an attrac-
tive demonstration of gait personality measurement in
an experience-based long-run exhibition at a science
museum (i.e.,, Miraikan). Each participant was asked to
declare his/her informed consent to allow the use of the
collected data for research purposes and provide gender
and age information as the ground truth for performance
evaluation.

After acquiring the gait video sequences, the size-
normalized and registered silhouette sequences [7] were
obtained subsequent to the background subtraction-
based graph-cut segmentation [56]. Once the gait period
was detected [7], the gait energy image (GEI) [6], which is
a gait feature widely used in the gait recognition commu-
nity, was extracted as the gait feature for the performance
evaluation of gait-based age estimation.

Consequently, we constructed the world’s largest gait
dataset including 63,846 subjects (31,093 males and
32,753 females) with ages ranging from 2 to 90 years
old. The overall time length of video data contained
in this dataset is approximately 44.3 h, more than five
times longer than the amount of existing public large-
scale databases. We call this dataset the “OU-ISIR Gait
Database, Large Population Dataset with Age” (OULP-
Age)!. The detailed distribution of subjects’ gender and
age groups in five-year intervals is shown in Fig. 2, and
example images of subjects in our dataset are shown in
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Fig. 2 Distribution of subjects’ gender and age in the OULP-Age

dataset

Fig. 3. Compared with existing gait databases, our dataset
has the following four main advantages.

1. Extremely large population: The number of subjects
is more than 10 times that contained in publicly
available large-scale gait databases, which
significantly improves the statistical reliability of the
performance evaluation of gait-based age estimation.
Moreover, some potential approaches (e.g., deep
learning-based approaches) to gait-based age
estimation are expected to be achieved only after
using this dataset, because the deep learning-based
approaches usually requires a sufficiently large
amount of training samples, although this paper
evaluated only the existing techniques which do not
rely on deep learning.

2. Entire generation: The age range is from 2 to 90 years
old, with each age group in 5-year intervals from 0 to
70 years old containing more than 500 subjects.
Furthermore, it is worth mentioning that our dataset
includes a sufficient number of children at all stages
of growth, in addition to a considerable number of
elderly people with a wide age variation, whereas
most existing gait databases mainly consist of young
and middle-aged subjects. These properties not only
provide more statistically reliable results for
performance evaluation, but also enable the
investigation of the dependences of age estimation
performance on age group, which is beneficial to the
training of a more reliable regression model.

3. Gender balance: The ratio of males to females is close
to one. This gender balance allows us to evaluate the
gender impact on age estimation performance, in
addition to constructing gender-specific gait aging
models or regression models for future research [11].

4. Silhouette quality and information correctness: Our
dataset has relatively high-quality silhouette images
because we manually checked each silhouette not
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Fig. 3 Example images of subjects in the OULP-Age dataset
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only to ensure image quality, but also to exclude
variations in walking conditions to enable a pure
investigation of gait-based age estimation.
Additionally, the gender and age information
inputted by participants serves as the ground truth
for performance evaluation. The participants might
have, however, mis-inputted their gender and age
information (e.g., an adult with his/her inputted age
of 3 years old, a male subject with his provided
gender of female) or joined this exhibition with other
person’s information (e.g., a child joined it with
his/her parent’s gender and age information). We
therefore asked our annotators to visually compare
original images and provided gender and age
information and to find out subjects with obviously
incorrect age and/or gender information. We
conducted this manual check twice by different
annotators and eliminated subjects from the database
whose ages and/or genders were annotated as
incorrect ones in the first and/or the second check.
As such, we minimized the effects of inaccurate age
and gender information on the performance of
gait-based age estimation as much as possible.

4 Benchmarks

4.1 Gaussian process regression

Gaussian process regression (GPR) [11, 55] estimates the
posterior probability distribution of the observed age that
corresponds to the testing gait feature based on the train-
ing set, where the posterior probability distribution is
defined as a Gaussian distribution. Additionally, the inner
product between two feature vectors is defined as a radial
basis function (RBF) kernel to handle nonlinearity. Con-
sidering the computational time, we adopt a GPR with an
active set method used in [55], where the training set used
is limited to the K nearest neighbors (KNNs) of that test-
ing sample. In this study, the observation noise variance
for estimating the posterior probability distribution was
set to 0.25, and the number of nearest neighbors (NNs)

K = 10,100,1000 were exploited in the performance
evaluation.

4.2 Support vector regression

The support vector regression (SVR) [57], a robust regres-
sor for function estimation based on support vectors, has
been employed by state-of-the-art face-based age estima-
tion [37]. Its basic concept is to determine a function
that has at most ¢ deviation from the actually obtained
target (i.e., ground truth age) for training gait features
and is simultaneously as smooth as possible, which makes
the SVR less sensitive to outliers. In this study, linear
and Gaussian kernels were used and the hyperparameters
were set as default values in MATLAB functions. More
specifically, we set the following: penalty coefficient C =
18.53 for the Gaussian kernel and C = 1 for the linear ker-
nel, and parameter for € deviation ¢ = 1.85. Additionally,
we set the kernel scale factor for Gaussian kernel function
to 32.88.

4.3 Multilabel-guided subspace

The multilabel-guided subspace (MLG) [27] is a projec-
tion to better characterize and correlate the gender and
age information of a person for age estimation, which is
motivated by the fact that gait appearance varies between
males and females, even within the same age group. Addi-
tionally, as a human’s age assumes only nonnegative val-
ues, a label encoding scheme is devised to convert the age
value into a binary sequence, so as to apply the subsequent
multilabel KNN classification [58] instead of conventional
regression methods. Principal component analysis (PCA)
is first applied to reduce the feature dimension, and in
this paper, we made PCA retain 99% of the variance. The
dimension of the MLG subspace was set to be the same as
the feature dimension after PCA projection.

4.4 Ordinary preserving manifold analysis
Ordinary preserving manifold analysis [28] aims to seek
a low-dimensional subspace such that the samples with
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similar label values (i.e., small age difference) are projected
to be as close as possible, and those with dissimilar label
values (i.e., large age difference) are projected to be as
far as possible, simultaneously. Multiple linear regression
models are further adopted to solve the regression prob-
lem in the low-dimensional manifold space. Two ordinary
preserving manifold analysis approaches proposed in [28],
ordinary preserving linear discriminant analysis (OPLDA)
and ordinary preserving margin Fisher analysis (OPMFA),
were both evaluated in this study. Similar to MLG, PCA
was first applied and preserved 99% of the variance.
The hyperparameters were all set to be the same as
those in [28].

5 Performance evaluation
5.1 Protocol
We randomly divided the entire dataset into two disjoint
subsets with the same size (i.e., 31,923 subjects), that is, a
training set and testing set, where the training set contains
15,596 males and 16,327 females, whereas the testing set
contains 15,497 males and 16,426 females2, with a similar
distribution as that of the entire dataset for both subsets.
We evaluated the performance of gait-based age estima-
tion using a mean absolute error (MAE) and cumulative
score [11, 28, 55]. Given the estimated age &f and ground
truth age a! for the i-th test sample, the MAE M is
defined as

1 X
Mzﬁziﬁf—“f
i=

where N is the number of test samples. Additionally, the
cumulative score for the y-year absolute error tolerance
CS(y) is defined as

N'(y)
Nt

, 1

CS(y) = , 2)
where N’(y) is the number of samples with an absolute
error within y years.

5.2 Performance of benchmarks

In this section, we compare the performance of the bench-
marks described in Section 4. The MAE and cumulative
scores are shown in Table 2 and Fig. 4, respectively. Addi-
tionally, the scatter plots of the ground truth ages and
corresponding estimated ages from five benchmarks? are
provided in Fig. 5.

We found that the accuracy of GPR increased with an
increase of K because a larger K includes more train-
ing samples, but is simultaneously computationally more
expensive. The SVR with the Gaussian kernel performed
better than that with the linear kernel because the lin-
ear regression cannot model the complex aging process
well [37]. Additionally, although MLG had the largest
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Table 2 MAE of the benchmarks
Algorithm MAE (year)
GPR (K = 10) 8.83
GPR (K = 100) 7.94
GPR (K = 1000) 7.30
SVR (linear) 8.73
SVR (Gaussian) 7.66
MLG 10.98
OPLDA 845
OPMFA 9.08

Bold and italic bold indicate the best and second-best performance. This font
convention is used to indicate performance throughout this paper

cumulative scores within the 5-year absolute errors, it
still obtained the worst MAE among all the benchmarks.
As a result, the GPR with K = 1000 achieved the best
MAE and also the best cumulative score (e.g., the absolute
errors of 74.2% and 88.5% of subjects are less than 10 and
15 years, respectively), whereas the SVR with the Gaussian
kernel yielded the second-best performance.

The results shown by the scatter plots are consistent
with the MAE and cumulative scores, which can be easily
understood from the distribution of the plots. Essentially,
the subjects with a small ground truth age (e.g., less than
20 years old) tend to be more overestimated, whereas the
subjects with a large ground truth age (e.g., more than
50 years old) tend to be more underestimated, where
females are more likely to have larger underestimate errors
than males. These characteristics are common for all the
benchmarks except for MLG, which converts the age
value into a binary sequence and classifies each binary
digit independently using all the training samples, regard-
less of the connection between the binary digits, which

—GPR (K=10)
SVR (linear)
OPLDA

- --GPR(K=100)  — -- GPR (K=1000)
SVR (Gaussian) ——MLG
OPMFA

100
90
80
70
60
50
40
30
20
10

0 1 1 1
0 5 10 15 20

Absolute error [year]

Cumulative score [%]

Fig. 4 Cumulative score of the benchmarks
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leads to the localization of the estimated age values. On
the other hand, the impact of gender difference and age
group difference demonstrates the possibility of consider-
ing gender-specific and age group-specific age estimation
to improve performance, which are further discussed in
Sections 5.4.2 and 5.4.3. Moreover, because some sub-
jects are estimated as having negative age values, which is
inconsistent with our knowledge of human ages, it will be
necessary to include a reasonable constraint on estimated
age values in future studies (i.e., truncated to nonnegative
values).

As an important aspect in real-world applications, the
computational times of the benchmarks were further
compared by running MATLAB code on a PC with an
Intel Core i7 4.00 GHz processor and 32 GB RAM. The
training times of the manifold subspace and regression
model, in addition to the query time of each test sample,
are listed in Table 3. Based on these results, the OPLDA
took much more time than the other benchmarks in the
training stage because the computational time complexity

is O(Nz) for computing the within-class scatter and
between-class scatter matrices, where number of train-
ing samples N was over 30,000 in our implementation.
Regarding the query time of each test sample, only GPR
(K 1000) exceeded 1 s because the increase of K
results in the cubic increase of the computational time for
the inverse matrix, and hence it is necessary to choose a

Table 3 Computational time of benchmarks

Algorithm Training time (h)  Query time of each test sample (ms)
GPR (K = 10) - 75.82

GPR(K=100) - 106.54

GPR (K = 1000) - 4749.21

SVR (linear) 5.050 23.56

SVR (Gaussian)  0.662 25.38

MLG 0.360 80.30

OPLDA 98.839 0.16

OPMFA 2964 0.19




Xu et al. IPSJ Transactions on Computer Vision and Applications (2017) 9:24

suitable K to balance accuracy and computational effi-
ciency for GPR [55].

5.3 Correlation among benchmarks

Although some kind of upper limit on the performance of
gait-based age estimation using benchmarks was demon-
strated in the previous section, it is still meaningful to
investigate the correlation between benchmarks for fur-
ther performance improvement using a fusion scheme.
Therefore, we analyzed the relations between signed
errors of two benchmarks with a full combination, as
shown in Fig. 6.

The results illustrated that the errors of MLG have
a relatively weak correlation with all the other bench-
marks because it uses the label encoding scheme and
multilabel KNN classification [58] instead of conventional
regression methods used in other benchmarks. Addition-
ally, the errors of GPR-SVR and OPLDA-OPMFA have
a relatively strong correlation because the former pair
are both example-based regression approaches and the
latter pair are both ordinary preserving manifold learning-
based approaches. On the other hand, although the error
relation between each pair of benchmarks is correlated
to some extent, dispersal exists at a certain level, which
indicates that there is still room for the performance
improvement of age estimation by fusing these bench-
marks, and therefore, an exploration of such fusion is a
future research avenue for gait-based age estimation.

5.4 Effects of gender and age group
In this section, we investigate the difference in gait-based
age estimation performance between genders and age
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groups. Our dataset is suitable for this task because of its
large population and wide distribution of age, in addition
to the gender balance, as mentioned in Section 3.2. SVR
with the Gaussian kernel was adopted for the evaluation
because it achieves a good trade-off between accuracy and
computational time, as reported in Section 5.2.

5.4.1 Effects of training subjects’ distribution

First, we focus on the difference in age estimation per-
formance between the different distributions of training
subjects. For this purpose, we prepared two training sub-
sets with the same size (i.e., 10,029 subjects) but different
distributions, and the testing set remained the same as
that introduced in Section 5.1. More specifically, the first
training subset, referred to as the equal-training set, is
regarded as an equal distribution in terms of gender and
age group, where 400 subjects were randomly selected
for each gender and age group in 5-year intervals from
0 to 50 years old, whereas all the subjects over 50 years
old introduced in the entire training set in Section 5.1
were used. The second training subset, referred to as
the unequal-training set, is considered to have a sim-
ilar distribution as the testing set in terms of gender
and age group and consists of subjects randomly chosen
from the entire training set, with the same size as the
equal-training set.

The MAE of each gender and total MAE over all sub-
jects in the testing set with for two training subsets are
summarized in Table 4. According to the results, the
unequal-training set achieved better performance than
the equal-training set because it has similar distribu-
tions to the testing set. Another interesting finding is that
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Table 4 MAE (year) of each gender and total MAE over all
subjects in the testing set

Equal-training set Unequal-training set

Female 8.68 830
Male 9.17 791
Total 892 811

Bold and italic bold indicate the best and second-best performance. This font
convention is used to indicate performance throughout this paper

the performance is better for females than males in the
equal-training set, whereas the converse results are
reflected in the unequal-training set. This is because
the unequal-training set is assumed to contain more
appearance variations (e.g., variations in clothes and hair
style) than the equal-training set considering the num-
ber of females, which affects the training of the regression
model.

Additionally, the MAE and mean signed error (MSE) of
each gender and age group in 5-year intervals, which are
counted based on the ground truth age and estimated age,
respectively, are shown in Figs. 7 and 8, respectively. Based
on the results, the MAE of the ground truth age groups
less than 35 years old from the unequal-training set are
smaller than that from the equal-training set, whereas the
MAE of age groups larger than 40 years old from the
unequal-training set are larger than that from the equal-
training set, which can be understood according to the
different distributions of training subjects.

Regarding the MSE shown in Fig. 8, the equal-training
set has a wider range of estimated ages, in addition to bal-
anced errors for most estimated age groups. Moreover, the
MSE of the equal-training set presents a clear trend with
respect to the age groups, which provides the possibility
of performance improvement. By contrast, the age groups

(2017) 9:24
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less than 5 years old in the unequal-training set have larger
MSEs than the other age groups, which also indicates that
there is room to improve performance.

5.4.2 Gender-specific age estimation

To demonstrate the difference between genders in age
estimation performance, we conducted experiments on
gender-specific age estimation, that is, training the regres-
sion model and estimating the age of test samples for
females and males separately. The same dataset setting as
Section 5.2 was used; thus, we can compare the results
with SVR (Gaussian) reported in Section 5.2, that is,
gender-nonspecific age estimation.

The MAEs listed in Table 5 demonstrate that the
gender-specific strategy slightly improved performance;
however, the difference is insignificant. Additionally, the
MAE of females is larger than that of males for both
gender-specific and gender-nonspecific age estimation,
which is because the range of appearance variations in
females that mainly originate from variations in clothes,
hair style, and shoes is greater than that in males.

5.4.3 Age group-specific age estimation

In this section, we focus on the difference in age esti-
mation performance among different age groups. Similar
to the analysis on gender difference, we divided all the
ages into five age groups to evaluate the performance of
age group-specific age estimation. More specifically, age
groups were set in 15-year intervals from 0 to 60 years
old, and the ages over 60 years old were set as one group
because of the small number of subjects. In addition to the
results of age group-specific and age group-nonspecific
(i.e., train the regression model using all ages and com-
pute the MAEs only for test samples included in each
group) age estimation, we also calculated the MAE of the
chance-level under a uniform distribution (i.e., assume a

a70
_ Equal-training set
5 60 e
5 Unequal-training set
=
~ 50
o
It
e
T 40
0]
5
5 30
(%]
Qo
© 20
c
3
210
0
MOMOWOWMOWOMOINOWOWO W
S T HAQFADD T F BHWO OO ND Y
O O o O O o O H OO O
HHNNMMQ‘QU’)U\\DKDI\NOOOOO\%

Ground truth age group

Fig. 7 MAE (year) of each gender and age group for two training subsets. Age groups are counted based on the ground truth age. a Male, b Female

b70
_ Equal-training set
< 60 L
® Unequal-training set
=
— 50
o
—
—_
v 40
)
5
S 30
(%]
el
© 20
c
3
§10
0
N OMNMOWMONOWMLOWMWOWOWMOoWmOouwmwo
SHFANDD T FWHWO OO QG QI
O =W HWOAWod O O OO T
HEH AN NN TN O ONNOOOOO W
[«)]
Ground truth age group




Xu et al. IPSJ Transactions on Computer Vision and Applications (2017) 9:24

Page 10 of 14

a
30 —
25 Equal-training set
— 20 Unegqual-training set
©
% 15
« 10
2 5
3]
3z 0
2 s |gPHE99858583932888KR34888
& TEF - 00O A0 0O d0dAO 0o
_10 |Ol-l:1 e AN ANMON NN O ONMNOOOWOO W
c A a
o 15 |
= 20
-25
-30
Estimated age group
Fig. 8 MSE (year) of each gender and age group for two training subsets

30 =

25 Equal-training set
— 20 Unequal-training set
3
2 b
« 10
<
= 5
(]
el 0
1 T e NONONONOLONOWLOWLOWLOoWmOo
ED -5 :‘?‘-,'OHHNNmmq-wmmuo\ov\v\oowcnmo
= T T 00000000 d0 oS
v 10 2w A N NN FNNOONNDOWOO O WO
s . B &
S 15 |}
= 20

-25

-30

Estimated age group

. Age groups are counted based on estimated age. a Male, b Female

uniform distribution of ages and use the mean age value as
the estimated age for each group) and chance-level under
a training distribution (i.e., adopt the mean age of the
training set as the estimated age for each group) for com-
parison. We still used the same dataset settings as those in
Section 5.2.

The MAEs of each age group are reported in Table 6.
The age group-specific strategy significantly improved the
performance of age estimation, especially for the group
less than 15 years old, which achieved a quite successful
MAE of approximately 1 year because this group contains
considerable gait changes during the growth of children.
Regarding the group of 31-45 years old, which is a difficult
case because the gait fluctuation among ages is smaller
than the other groups because of the quite slight difference
in physical state, although the performance of age group-
specific age estimation is not as good as the group from
0 to 15 years old, it still suppressed the MAE to be lower
than half of that for age group-nonspecific age estimation.
Therefore, it is reasonable to believe that age estimation
performance could be improved by first conducting age
group classification and then estimating the age depend-
ing on the classified age group, which is a potential future
research direction.

5.5 Sensitivity of training subjects’ number

In this section, we demonstrate the sensitivity of the num-
ber of training subjects. We prepared six sizes of training
set for comparison, that is, 1000; 2000; 5000; 10,000;

Table 5 Comparison for the MAE (year) of gender-specific and
gender-nonspecific age estimation

Gender-specific Gender-nonspecific

Female 772 7.87
Male 740 743
Total 757 7.66

20,000; and the maximum number (31,923) of subjects,
with the first five training subsets all randomly chosen
from the maximum training set. Again, the evaluation was
based on SVR with the Gaussian kernel.

The MAE of the testing set first decreased rapidly with
an increase in the number of training subjects, and then
declined relatively slower. As a result, the maximum size
of the training set achieved the minimum MAE, which can
be observed in Fig. 9. Consequently, a large-scale training
set is necessary to obtain more statistically reliable results,
in addition to training a more reliable regression model.

5.6 Statistical reliability of database

To validate the statistical reliability in terms of perfor-
mance evaluation of gait-based age estimation using this
dataset, we compared the performance with the exist-
ing largest gait database, i.e., OULP dataset, by apply-
ing SVR with the Gaussian kernel. More specifically, we
repeated the experiments with 10 different pairs of train-
ing and testing subsets that were randomly chosen from
the whole dataset with an equal size (i.e., 31,923 subjects
for our dataset) and computed the mean and standard
deviation of the obtained MAEs. Due to the different
setup of camera viewing angle in OULP dataset, we exe-
cuted the repeating random selection scheme for a subset
from OULP dataset with the observation angle of 85°

Table 6 MAE (year) of each age group

Age group Age group- Age group- Chance-level Chance-level
nonspecific - specific under a uniform under a training
distribution distribution
0-15 594 1.18 4.00 2.46
16-30 5.68 3.10 3.73 3.36
31-45 7.50 3.52 3.73 3.75
46-60 14.42 3.30 373 3.45
Over 60 28.59 415 - 4.47

Bold and italic bold indicate the best and second-best performance. This font
convention is used to indicate performance throughout this paper

Bold and italic bold indicate the best and second-best performance. This font
convention is used to indicate performance throughout this paper
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Fig. 9 MAE (year) of the testing set using different numbers of
training subjects. Training sets composed of 1000; 2000; 5000; 10,000;
20,000, and 31,923 subjects were prepared for comparison. The
horizontal axis is shown on the log scale

(i.e., OULP-C1V1-B-85 [45]), that has almost the same
viewing angle as ours (i.e., 90°). The OULP-C1V1-B-85
totally contains 3923 subjects, and therefore 10 pairs
of training (1962 subjects) and testing (1961 subjects)
subsets were prepared to compare the results with our
dataset.

As seen from the Table 7, while OULP-C1V1-B-85
yielded 0.140 (years) standard deviation of the MAEs,
the proposed dataset got a sufficiently smaller standard
deviation of the MAEs as 0.059 (year), which illustrates
the high statistical reliability of the dataset in the aspect
of performance evaluation of gait-based age estimation.
In addition, the smaller averaged MAE compared with
the OULP dataset again demonstrates the necessity of
large-scale training set for obtaining better age estimation
performance, which is consistent with the observation in
Section 5.5.

5.7 Failure case analysis

Because SVR is a type of example-based regression
approach, we first present Fig. 10 to investigate the rela-
tion between the absolute error and the NN distance from
the training samples for each test sample, that is, we want
to determine whether a rare test sample that is far from
any training samples suffers from large errors. Essentially,
a small NN distance is more likely to result in a small
estimation error, yet outliers exist; thus, we analyze these
failure cases in this section.

Table 7 Comparison of the proposed dataset and OULP dataset
in terms of the mean and standard deviation of the MAE (year)

OULP-C1V1-B-85 Proposed dataset
Mean 8.80 765
Standard deviation 0.140 0.059

Bold and italic bold indicate the best and second-best performance. This font
convention is used to indicate performance throughout this paper
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NN distance from training samples

Fig. 10 Relation between the absolute error and NN distance from
the training samples for each test sample. Female and male samples
are depicted in red and blue, respectively

The failures can be divided into two types: (1) fail-
ures with small NN distances from the training samples
and (2) failures with large NN distances from the train-
ing samples. We first present some typical failed examples
that fell into the first type in Fig. 11a. These failures
mainly resulted from differences in gait features between
their chronological age and physiological age. For exam-
ple, the underestimated elderly and middle-aged subjects
may look very slim or appear to have no apparent stoop
in their gaits, whereas spread and stoop are very common
for most elderly and middle-aged adults, and therefore,
their gaits are closer to those of young people or even
children, and vice versa. On the other hand, these fail-
ure cases imply another interesting research topic, which
is that the age estimated by gait indicates the physical
strength and fitness of humans, to some extent, which may
be applied in the field of health examination and exercise
science [11].

Next, we provide several examples from the second type
of failure in Fig. 11b. These failures mainly originated from
the unique walking style (e.g., some subjects raise their
arms higher than generic subjects) or special clothing
(e.g., a long dress or coat), which cause a large difference
between this test sample and the generic training sam-
ples. This type of failure is common for example-based
regression approaches [11], and hence, it is necessary
to extract more effective features that are less sensitive
to such appearance variance to reduce the effect of this
problem.
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39
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NN
Training
sample

37

26

Fig. 11 Typical failure (absolute error larger than 20 years) examples. Digits i
bracketed digits represent the estimated age, whereas red indicates an overt
sample, gray digits indicate the NN distance from the above testing sample.

42 29 46 11 25 41

4 Subject5 Subject6 Subject7 Subject8

69 72 22 41 58 68

(46)

4 Subject5 Subject6 Subject7 Subject 8

44 52 56 68 71 63
42 34 41 59 32 22

n black represent the ground truth age. For the testing sample,
estimate and blue indicates an underestimate. For the NN training
a Failures with small NN distances (less than 2.5E+04) from the training

samples, b Failures with large NN distances (more than 4.0E+04) from the training samples

6 Conclusion

In this paper, we described the construction of a gait
database comprising a large population dataset with age
and presented a statistically reliable performance eval-
uation of gait-based age estimation. The proposed gait
dataset includes 63,846 subjects, which is more than 10
times greater than the number contained in existing pub-
lic large-scale databases. Additionally, our dataset has
an advantage over existing databases in terms of age
variation (ranging from 2 to 90 years old), gender bal-
ance, and the silhouette quality and information correct-
ness guaranteed by manual confirmation. The statistically
reliable performance of gait-based age estimation was
evaluated using benchmark algorithms on our dataset.
Moreover, the effects of gender and age group, in addi-
tion to the number and distribution of training sub-
jects, on age estimation performance were analyzed, with
the results providing several insights for future research,
such as the performance difference between genders

and performance improvement by age group-specific age
estimation.

One important future work is the enhancement of this
dataset, especially for the elderly, whose number of sub-
jects is still insufficient compared with that of other gen-
erations. Moreover, the performance improvement of the
benchmarks by incorporating other state-of-the-art fea-
tures and regression methods, in addition to the develop-
ment of a better approach, also need to be investigated in
the future. Additionally, our dataset is suitable for research
on gait-based gender and age group classification, which
are meaningful preprocesses for gender and age group-
specific age estimation to further improve performance,
and these will be addressed in future studies.

Endnotes

! This database is available at http://www.am.sanken.
osaka-u.ac.jp/BiometricDB/index.html. GEI features are
provided for each subject in PNG format.
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2The lists of subject IDs for the training and testing sets
are available, together with the dataset.

3Only GPR with K = 1000, SVR with the Gaussian
kernel, MLG, OPLDA, and OPMFA are plotted.

* Considering that the number of subjects over 50 years
old is much fewer than those less than 50 years old, we
used all the subjects over 50 years old in the entire training
set to maintain the age group balance as much as possible.
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