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The objective of this study is to demonstrate through empirical evaluation the potential of a number of computer
vision (CV) methods for sex determination from human skull. To achieve this, six local feature representations, two
feature learnings, and three classification algorithms are rigorously combined and evaluated on skull regions derived
from skull partitions. Furthermore, we introduce for the first time the application of multi-kerel learning (MKL) on
multiple features for sex prediction from human skull. In comparison to the classical forensic methods, the results in
this study are competitive, attesting to the suitability of CV methods for sex estimation. The proposed approach is fully
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1 Introduction
Sex determination from human skull plays an essential
role in forensic anthropology. In the literature, morpho-
logical assessment and morphometric analysis are the two
main approaches, which have historically been demon-
strated for capturing sexually dimorphic characteristics
from cranial regions. Morphological assessment involves
some procedural steps where a forensic expert visually
examines the anatomical regions of the skull (such as
the glabella, mastoid, nuchal crest, orbital, and mental
eminence), reports the observed variations on the skull
with standard semantic terms, quantifies the descriptions
on an ordinal scale, and eventually uses discriminant
function analysis (DFA) to predict the sex of the skull.
Morphometric analysis, on the other hand, requires foren-
sic experts to annotate and measure the distance between
anatomical landmarks. These measurements are consid-
ered as input to a DFA model to determine the sex of the
skull.

Though both techniques are generally acceptable con-
cepts founded on well-grounded principles for forensic
examination, they exhibit some limitations. For instance,
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both estimation techniques are based on manual deriva-
tion of estimation parameters. Morphological assessment
being a method that relies on visual perception is highly
influenced by subjectivity of the observer. Besides, it
necessitates a certain level of experience as well as famil-
iarity of the forensic expert with the cranial samples in a
population group that is being studied. Whereas, the pro-
cess of morphometric analysis is laborious as it requires
ample amount of time for accurate and precise landmark
annotation. Moreover, variation in the shape of the skull
is another limitation of morphometric analysis, which
inhibits the generalization ability of the method to diverse
population groups.

This paper presents an automatic estimation method
which eschews the need for human manual assessment.
We demonstrate with experimental evidence the potential
of computer vision (CV) methods for cranial sex estima-
tion. Of particular interest is application of different 3D
local shape descriptors, feature learning, and classifica-
tion methods. In addition, for the first time, we present
multi-kernel learning on multiple features for cranial sex
estimation. 3D local descriptors have been used in several
CV and medical applications such as 3D object recogni-
tion [1, 2], face recognition [3], gender recognition [4, 5],
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diagnosis of cranial deformity, and detection of anatomi-
cal landmarks [6—8]. However, to the best of our knowl-
edge, there are no related works on their application to 3D
representation of skulls for sex determination.

The remainder of the paper is organized as follows.
Section 2 presents the related works on cranial sex
estimation. In Section 3, we describe the experimental
dataset used for validating our work. Section 4 presents
the CV framework for cranial estimation which includes
sub-stages of pre-processing, 3D local shape representa-
tion, feature learning, and classification. In section 5, we
demonstrate the usefulness of the proposed CV methods
by the prediction results attained. Finally, discussion and
conclusion are given in Section 6 to summarize this paper.

2 Related works
Morphological assessment and morphometric analysis are
the two main techniques employed by forensic anthro-
polgists for sex determination [9]. The earliest studies
using morphological assessment were reported in [10-
12]. Studies in the 90’s have established standardized
quantification methods using ordinal scale to aid visual
assessment of sexually dimorphic characteristics from five
anatomical sites of the skull [13]. These traits include the
robusticity of the nuchal crest, size of the mastoid process,
sharpness of the supraorbital margin, prominence of the
glabella, and projection of the mental eminence. A foren-
sic expert would examine how the dimorphic characteris-
tics are expressed in those five anatomical sites and their
visual similarity to the diagram presented in [13]. With
various ordinal scoring methods, forensic experts have
been able to achieve estimation performance between 83
and 90% [12, 14]. It has also been demonstrated that spe-
cific cranial regions such as the shape of supraorbital
margin [15] can be assessed for sex determination with
prediction rate of 70%. This is made possible by form-
ing the contour shape of the supraorbital with plasticine
impression, which is then visually assessed and quanti-
fied on a 7-point ordinal scale. A modification of such
technique has been presented in [16] replacing manual
assessment with computer-aided method by using 2D
wavelet transform on 3D reconstruction of the scanned
supraorbital impression to study its shape variation.
Alternative sex estimation technique is based on mor-
phometric analysis, which involves linear or geomet-
ric measurement of anatomical landmarks. The choice
of landmarks to annotate varies among the methods
reported in literature. Franklin et al. [17] reported using
eight measurements of the 3D landmarks to perform mor-
phometric analysis with discriminant function analysis,
which yielded prediction rates between 77 and 80%. The
author discovered high sexual dimorphism in the facial
width (bizygomatic breadth) and the length and height
of the cranial vault. Bigoni et al. [18] conducted a study
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on 139 cranial samples of the Central European popu-
lation, where 82 ecto-cranial landmarks were annotated
from seven sub-regions (the configuration of the neuro-
cranium, cranial base, midsagittal curve of vault, upper
face, orbital region, nasal region, and palatal region) of the
skull. Generalized procrustes analysis (GPA) was adopted
for analyzing the shape configuration, and no sex differ-
ence were noticed in the sample set when landmarks from
the whole cranium were used. However, through partial
shape examinations on each of the seven regions, there
were indications of strong sexual dimorphism in the mid-
sagittal curve, the upper face, the orbital region, the nasal
region, and the palatal region, but no sex variation in
the cranium base and the neurocranium configuration.
Another study has compared two discriminant function
analysis methods on 17 craniometric variables from 90
Iberian skulls [19]. The authors observed higher metric
variables in male samples than in female samples [19]. Luo
et al. [20] presented statistical analysis of the holistic shape
of the frontal part of the skull using principal component
analysis (PCA) and linear discriminant analysis (LDA) on
Chinese samples.

While morphological assessment and morphometric
analysis appear to be technically simple, they have been
demonstrated to be effective for cranial sex estimation.
Moreover, they are concepts which have been established
on well-grounded principles and universally acceptable as
evidence in court cases and forensic investigation [21].
Nevertheless, there are a number of weaknesses in the two
techniques that are worth mentioning:

e Subjective perception of the observer (forensic
expert) affects the confidence of prediction [18, 22].
This is a natural phenomenon associated with visual
assessment and verbal description of the observed
variation, especially in a situation where the
descriptions connoted from a particular group is
unable to generalize to other groups due to
discrepancies in the perception of the observers.

e Inter-observer variability is commonly experienced
when observers select landmarks in the case of
morphometric analysis. Furthermore, this influence
of population difference affects the accuracy and
precision of the traits used for identification. As a
result, an estimation method used in a specific
population may not generalize to other
populations [23]

e Inaccurate and incomplete landmarks is another
limitation of morphometric analysis. In fact, it has
been shown that the inter-observer error is
approximately 10% for most measurements [21].
Accurate annotation of anatomical landmarks
requires ample amount of time and it often needs
expensive, specialized anthropometric equipment. In
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addition, forensic expert usually face the challenge of
performing measurements that capture subtle
variations among cranial traits that are easy to see but
very difficult to measure [14].

2.1 Main contributions

The main objective of this paper is to demonstrate the
potential of computer vision methods for sex determina-
tion from human skull. Though it is accurate that the 3D
feature descriptors adopted in this paper are well known,
from a holistic point of view, a framework integrating
several stages of pre-processing—feature extraction, mul-
tiregion representation, and classification—has not been
reported in the literature (to the best of our knowledge),
which indicates the novelty of this work. Such pipeline
provides an incentive for forensic anthropologists to look
at sex estimation problem from a totally different perspec-
tive. Moreover, the proposed approaches are completely
automatic. We therefore summarize the contributions of
the paper as follows:

e This paper proposes using computer vision
approaches based on local feature representation,
feature learning, and classification for sex prediction
from human cranial data obtained from CT scans.
The proposed method advances the conventional
forensic methods as it does not rely on manually
configured estimation parameters.

e We propose to partition the skull along the axial,
coronal, and sagittal axes, extract 3D local shape
features, and aggregate those features into compact
representations that possess discriminative
capabilities. To segment the skulls into smaller
regions, we constrained the partitioning to the X-,
Y-, and Z-axes, where accurate distribution of
features in each local sub-region can be generated.

e Furthermore, comprehensive performance analysis of
different combination of local features and feature
learning methods with different number of regions
from the three planes is presented.

e Finally, we introduce the concept of multi-kernel
learning on multiple features for cranial sex
prediction. To the best of our knowledge, this is the
first study to approach the problem of skull sex
estimation from this novel perspective.

3 Application of computer vision methods

This section introduces the proposed framework for sex
classification, which is composed of four main stages:
3D data pre-processing, 3D feature representation, multi-
region feature representation, and classification.

3.1 Experimental dataset
The experimental data is a 100 sample set of post-mortem
computed tomography (PMCT) scan slices obtained from
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the Hospital Kuala Lumpur (HKL). There are 54 males
and 46 females between the ages of 5 and 85 years from
South East Asia. Seventy percent of the data are Malaysian
(Malay, Chinese, Indian) and 30% non-Malaysian. The
scanning device is a Toshiba CT scanner with scanning
settings of 1.0 slice thickness and 0.8 slice interval. The
data contain slices belonging to the head region with reso-
lutions between 512 x 512 x 261 and 512 x 512 x 400,
depending on the size of the skull of each subject. Legal
consent for the use of the dataset was obtained prior to
commencing this research.

3.2 3D data pre-processing

The consecutive 2D CT slices of each subject are stacked
vertically to obtain 3D volumetric data, which are then
filtered to reduce noise, local irregularities, and rough-
ness using a discretized spline smoothing method [24].
The 3D smoothing technique utilizes 3D discrete cosine
transform-based penalized least square regression (DCT-
PLS) on equally spaced high-dimension data. The main
idea of the algorithm is to reformulate PLS regres-
sion problem with DCT, where the data are expressed
in the form of cosine functions oscillating at different
frequencies [24].

Afterward, the denoised 3D volumetric data is recon-
structed into 3D surface using marching cubes algorithm
[25] as illustrated in Fig. 1. The reconstruction is achieved
using an iso-value of (150) to obtain the regions contain-
ing hard tissues. As the reconstructed 3D surface is of
high dimension (> 650,000 vertex points), mesh simpli-
fication is performed to reduce the surface to 13% of the
original size [26]. The resulting downsampled skulls have
< 130, 000 vertices, with well-preserved structural details
of the surface after downsampling, as shown in Fig. 1.

3.2.1 Background object removal

After surface reconstruction, we noticed some dynamic
background objects scanned with the subjects, with the
same isovalue as the hard tissue, around some skull sam-
ples (~ 27 samples). In order to remove these background
objects, we propose a method based on online sequential
least square (OLS) with Gaussian mixture model (GMM)
sample initialization. We are able to design this method
using 27 noisy samples; however, the same approach can
be improved further when there is availability of larger
noisy samples. Initially, a training data matrix is prepared
by randomly selecting eight clean and eight noisy skull
samples. For each noisy skull, we manually annotate and
cut out the background objects. The set of background
objects which have been manually segmented are con-
sidered to form the negative training samples, while the
clean skulls are regarded as the positive training sam-
ples, as illustrated in Fig. 2. Therefore, the training set is
composed of eight clean and eight segmented background
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Fig. 1 Examples of reconstructed skull data. a Original skull. b
Downsampled to 50% . € Downsampled to 25%. d Downsampled to
13%

objects resulting in ~ 750,000 training vertex points for
the two classes. Due to the size of the training set, we used
a sequential learning method where each time the train-
ing is performed in batches. However, the initial batch of
data for training is initialized using a GMM to fit a mixture
model composing of K components. Consider a training
set A = {vy,...v;}, where A is a matrix consisting of
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clean and segmented background objects and v; is a vertex
point; GMM is used to cluster the set A into K clusters.
Then, the OLS training process is initialized by choosing
a cluster as the initial batch Ag. After selecting the initial
batch, the following minimizing problem is solved:

Minimize: ||Aoxo — bol|* + A|lxo] > 1

where x¢ are the coefficients, X is the regularization term,
and by = {+1,—1} are the labels (+1 for clean skull,
—1 for the background object) of the initial subsets. The
initial solution xy can be obtained analytically using:

-1
X0 = (AJAO + M) Al by @)

The coefficients xy are referred to as the least
square solution to the minimization problem in
Eq. (1). The inverse matrix M 1 can be obtained as:

My' = (AgAo +AI)_1 and the output coefficients
X0 = M(;IA(—)rbo.

3.2.2 Updating Xi41

Having obtained the initial solution, the remaining subset
of the data can be trained batch-by-batch without keep-
ing the previously trained set to minimize computational
time and complexity. Thus, it is necessary to use an effi-
cient approach to update the initially learned coefficients,
while solving new linear systems minimization problem
[27]. A well-recognized method to sequentially update xg
is the Sherman-Morrison Woodbury inverse formula [28].
When new sample subsets Ay ; = {V’f"’l, R V{-(-H} are
learned in batches, we can update x¢ from Eq. (2) as:

Fig. 2 Noisy object removal. a Data with noise. b Clean and aligned skulls after object removal. € Removed noise
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X1 = Xk + M,;:]A,ZH (brs1 — Ax+1%x) (3)
~1
-1 -1 —1 T -1 T -1
Ml = M7 =M A (AT M Agn) AT M
(4)

where x; is the output coefficients in the previous
step, by 11 is the newly collected labels and M;il

-1
<A1{+1Ak+1 + M) . Once xi;1 has been learned, each

new skull sample containing noise, which were not
included in the training phase are used to test the model.
The results obtained are depicted in Fig. 2.

Afterward, skull alignment is performed using an itera-
tive closest point (ICP) algorithm [29].

3.3 Skull representation with 3D local shape features
3.3.1 Mesh local binary pattern (MeshLBP)

MeshLBP is a local shape representation method for
directly extracting local binary patterns from 3D mesh.
Basically, the algorithm forms a set of ordered ring facets
(OREF) [30, 31] and calculates the primitive functions such
as mean or Gaussian curvature for each facet in the ring.
Then, the binary patterns are obtained by thresholding the
primitive function of neighboring facets by that of the cen-
tre facet. Given the primitive function p(f) , defined on a
mesh, represents the Gaussian curvature. The MeshLBP
can be derived as follows:

m—1
MeshLBP,,(f) = Y _ s (p(fy) — p(fe)) - (k) (5)
k=0
1, >0
=10, <0

where r is the ring number and m is the number of facets
available in the ring.

These two parameters in the Eq. (5) regulate the radial
resolution and azimuthal quantization, while the discrete
function «/(k) is a weight which enables computation of
other variants of LBP. Using «1(k) = 1 gives binary
pattern in the range [0-12], while ap(k) = 2k gives pat-
terns in the range [0-4096]. In order to represent the
skull with MeshLBP, ten-ring neighbors are computed for
each individual facet (this is chosen to provide a trade-
off between fairly covering a large local neighbourhood
and less computational time), m = 12 and ay (k). Then,
the MeshLBP is extracted by comparing the Gaussian
curvature of center facet to the neighboring facets. An
example of MeshLBP feature representation is illustrated
in Fig. 3. The output of MeshLBP is V-by-10 matrix for
each skull sample, with V' denoting the number of vertex
points.

3.3.2 Spinimage
Spin image [1] is a point-based descriptor which is invari-
ant to rotation and translation commonly used for object
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Fig. 3 Example of MeshLBP feature distribution by mapping the
binary patterns to different color map. For illustration, we display the
binary pattern of ring (r = 2). Red color indicates areas of small
binary pattern (0) due to small variation in the curvature of the local
regions. Blue represents patterns with values (1-16), green denotes
patterns with values (32-256), and cyan represents patterns with
values (512-4096), due to large variation in the curvature of the local
regions. For instance, sharp curvature variation can be observed
around the local regions of the orbital, nasal bone, and mandible,
while the parietal bone exhibits mild variation in curvature

retrieval. Spin image generates 2D histogram for mesh
point containing the representation of object geometry.
To begin with, oriented points are initially computed for
each point on the mesh according to location of the
vertex p and its surface normal », which results in a
2D basis (p,n). Then, to obtain the coordinate system,
a tangent plane P passing through p is formed which
is perpendicular to the normal n and line L through
p that is parallel to #, resulting in a cylindrical coor-
dinate system («,8), where o is a non-negative dis-
tance to L and B is signed distance perpendicular to
P. Finally, a spin map S, is formed by projecting the
3D points x on a mesh to 2D coordinates (o, 8), which
are accumulated into discrete points that are updated
incrementally.

The size (imax,jmax) Of @ spin image is determined by
the size of the bin and the maximum size of the object
expressed in the spin map coordinates.

In this paper, a cell size of 10 and histogram bin of 10 are
used for extracting the features, which result in 10 x 10
spin image for each vertex.
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3.3.3 Local depth SIFT (LD-SIFT)

LD-SIFT [2] is an extension of SIFT [32] to mesh surface.
The process of extracting the LD-SIFT features involves
detecting a number of interest points representing the
local maxima from difference of Gaussian (DoG) opera-
tion on the mesh. From each interest, a sphere support
is constructed to cover the neighboring region. LD-SIFT
then creates a 2D array that emanates from estimating a
tangent plane T within the support region and comput-
ing the distance from each point in that region to the
plane. Then, it makes the feature scale invariant by setting
the viewport size to match the feature scale, as detected
by the DoG detector. Further, it computes the principal
component analysis (PCA) of the points surrounding the
interest point and use their dominant direction as the
local dominant angle. Similar to the standard SIFT, the
depth map are rotated to a canonical angle with respect to
the dominant angle to make the LD-SIFT rotation invari-
ant. From the resulting depth maps, the standard SIFT
feature descriptors are computed to create the LD-SIFT
feature descriptor. The features represent 8-bin gradient
histograms distributed in the local cells of 4 x 4 depth
map. As a result, the dimensional of the final feature
vector is 128 (4 x 4 x 8) for each detected vertex
(interest) point.

3.3.4 Scale invariant heat kernel signature (SIHKS)

Heat kernel signature (HKS) is a type of spectral shape
representation method which uses deformable shape anal-
ysis to create the point signature of a specific point
[33]. The representation follows the concept of model-
ing shapes as Riemannian manifold and using their heat
conduction characteristics as a descriptor.

Initially, heat kernel signature was proposed in [33] for
shape representation, which is invariant to isometry and
has gained popularity in shape retrieval application. How-
ever, the limitation of HKS is that the descriptor is not
scale invariant. As a result, Bronstein et al. [34] intro-
duced a method to remove the scale effect by sampling
each point logarithmically in time (¢ = «7) and then
computing the derivative based on the scale to undo the
additive function with respect to the scale. They further
utilized Fourier transform to remove the shift variation. In
order to extract SIHKS, we used a logarithmic scale-space
with base @ = 2 ranging from t = 1 : 20 with incre-
ments of 1/5. We then chose the first ten frequencies for
feature representation. Each feature point in the 10-length
vector denotes the heat kernel signature at a particular
scale.

3.3.5 ShapeDNA

ShapeDNA initially proposed by Reuter et al. [35]
computes the fingerprint of any 3D object by deriv-
ing the eigenvalues of Laplace-Beltrami operator of the
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shape model. It is isometry invariant and insensitive
to noise. Normally, eigenvalues A and eigenfunctions u
are the solutions to the laplacian eigenvalue problem
Au = — \u, where Au := div(grad(u)), div is the diver-
gence of the underlying Riemanian manifold and grad
represents the gradient. The first normed N eignevalues
0 < A1 < Ag,...A, are chosen as the shape descriptor.
In this paper, we selected the first 100 eigenvalues as
the shape descriptor. Figure 4 depicts some examples of
ShapeDNA representation.

3.3.6 Area of skull regions

Finally, the surface area of each local sub-region of the
skull is computed as additional features. The skull is ini-
tially partitioned in smaller regions along the X, Y, or
Z, and the corresponding area is computed following the
approach in [36]

3.4 Multiple-region feature representation

The common practice in computer vision applications is
to directly concatenate features extracted from keypoints
into long-tailed vector or, as an alternative, use the bag-
of-word model to construct a compact representation.
Nevertheless, we discovered that these approaches result
in high possibility of the local features from a particular
class to possess dissimilar representation. This inherently
makes features from two different classes to exhibit the
same or similar feature values, which reduces the informa-
tive characteristics of such methods. Hence, in this work,
we employed a heuristic partitioning method, where each
skull is divided into several regions along a particular
orientation (axis). In each region, we stack the represen-
tations from each point on each other and aggregate the
features into compact representation as shown in Fig. 5. It
is essential to note that the partitioning could have been
performed following the anatomic structure of the skull.
However, such partitioning is itself a research topic, and
there are currently no reported methods for anatomic
partitioning in the literature. We intend to investigate
this research aspect in our future works. Thus, such
exploration would go beyond the scope of the current
paper.

Assuming spin image of 10 x 10 size is extracted from
V= 10,000 vertices, we stack the spin image from
each vertex point on one another and calculate the aggre-
gate, which results in a final spin image of 10 x 10
descriptor size and feature vector of 100 dimensions, as
shown in Fig. 5. This makes the representation more dis-
tinctive than the long-tailed concatenated or bag-of-word
representation. Similar approach is used for LD-SIFT by
stacking the gradient features from the keypoints and tak-
ing aggregate, which results in a final feature vector of 128
dimensions. For MeshLBP, the descriptor extracted is 10



Arigbabu et al. IPSJ Transactions on Computer Vision and Applications (2017) 9:19

Page 7 of 15

L
50 60 70 80 100

Fig. 4 a, c Eigenvector over the rendered 3D skull surface. b, d Plot of 100 eigenvalues forming ShapeDNA descriptor

scalar values from 10 rings for each vertex point, mak-
ing a V' x 10 descriptor matrix; thus, a 32-histogram
bin is aggregated for each ring along the vertices and
the final feature vector is the concatenation of the his-
tograms from the 10 rings (32 x 10 320 feature
descriptor). We used 32 bins to keep the dimension of
the feature vector to a reasonable length. Also, STHKS is
compactly represented in this fashion, using 32-bin his-
togram bins to represent each frequency, which yields
32 x 10 320 descriptor. To obtain discriminant

representation from the extracted features, we used the
Kernel principal component analysis (KPCA) [37] which
is a dimensionality reduction method that generalizes the
standard PCA to non-linear feature representation and
K-SVD [38], a dictionary learning technique.

Furthermore, to make our evaluation comprehensive,
the partition is performed along the X-, Y-, and Z-axes, as
depicted in Fig. 6, and the number of regions N examined
in each axis is N = {1:2:99}. The results attained from
the regions in each axis are illustrated in Section 4.

Keypoint
Descriptors

Stacked
Descriptors

Concatenated Features

Aggregated
Descriptors

Feature Vectors

Fig. 5 An example of multi-region representation with LD-SIFT. Each color denotes a partitioned sub-region of the skull




Arigbabu et al. IPSJ Transactions on Computer Vision and Applications (2017) 9:19

Page 8 of 15

Fig. 6 a—c Some examples of multi-region partitioned skull. a Partition on x-axis. b Partition on y-axis. ¢ Partition on z-axis

3.5 Multi-kernel learning (MKL) on multiple features
Besides testing the performance ability of the six local
shape descriptors described in Section 4.2, we examine
the potential of MKL to fuse multiple features with dif-
ferent representation properties. MKL has attracted sig-
nificant amount of attention in CV research domain. In
this paper, the soft margin MKL algorithm introduced by
Xu et al. [39] is adopted, where a kernel slack variable is
first introduced for each of the base kernels when learn-
ing the kernel. This approach is advancement over the
MKL framework generally regarded as the hard margin
MKL [40], which imposes sparsity on a category of fea-
tures and selects the features that best optimize the object
function. In fact, it has been pointed out in [39] that the
hard margin MKL is a method which only selects the base
kernels with minimum objective. This could easily lead to
overfitting problem, particularly in a situation where the
base kernels contain noisy features. Following the notion
of standard hard margin SVM, it is believed that data from
two classes can be separated by a hard margin. However,
to enable usability of SVM in real applications the slack
variables were introduced to the hard margin SVM, which
allows some training errors to be incorporated to the
training data, thereby minimizing the overfitting problem
[39]. This concept inspired the development of soft mar-
gin MKL, which instead introduces kernel slack variable
for each of the base kernels [39].

Futhermore, by conducting independent experiments
on each local feature, we are able to figure out the best fea-
ture set in Section 4.1, where it turns out that MeshLBP
> Spin Image > LD-SIFT > SIHKS > ShapeDNA > Region
Area. Hence, the point of using MKL in this paper is to
try to induce information from more than one feature
source by different combination, which is why the soft
margin MKL is more suitable for this purpose. As a result,
it makes it unnecessary to select the best feature again or
highlight the best set of features. Moreover combination
of all features exhibited poor performance indicating that
information cannot be induced from all features at the
same time.

The motivation behind MKL is to combine or fuse
multiple kernels or features rather than using a single fea-
ture representation to make prediction, with expectation
that such combination leads to potential gain in perfor-
mance. Assuming, we have a training set M consisting of
(hi» gi, wi)?il where /; is a type of local features of the ith
sample and g; is a another type of features of the same
sample and w = (—1,+1) are the class labels. We can
map the features to the reproducing kernel hilbert space
(RKHS) with a kernel function k(-,-) defined over each
of the two feature types. Without loss of generality, this
notion applies to more than two feature types.

3.5.1 SVM-based MKL

Suppose we have a set of base kernels K = {Ki,...Ky}
for our training set, the objective of the standard problem
solved by the MKL introduced in [39] is:

N
i SVM({K,, 6
{&%%\r}l;un (K, ot} (6)
where, SVM{K,;,a} = —1/2(a © w)'K,(a © w), a; are

the coefficients of the samples, and u =[ 1, ... un]" ! are
the coefficients measuring the importance of the nth base
kernel. A = {a]a¢'l = 1,a/'w = 0,0 < o < C}is the
domain for « and M = {«¢|0 < u, Zﬁ[zl,u = 1} is the
domain for . For the solution in Eq. 6, a hard margin is
constructed resulting in selection of only the most impor-
tant base kernel, which eventually defeats the purpose of
finding interaction between different feature sets. There-
fore, in this work, we used the soft margin formulation,
where a slack variable which is the difference between the
target margin t and the objective is introduced as:

¢ =1—-SVM{K,,a} V,=1,...N (7)
The loss incurred by the kernel slack can be expressed as

§n=4L(n) Yu=1,...N (8)

where £(-) is a hinge loss function £(-) = max(0, ¢;,).
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Besides using MKL to induce information from differ-
ent features, it will be interesting to explore the interaction
and joint contribution of different regions using MKL.
However, as it itself is another research topic and our cur-
rent focus is on evaluating the performances of different
types of features and their combinations for sex identifi-
cation of the cranial, we hope to include this direction in
our future research.

4 Experimental results

In this section, two different experiments are reported
to evaluate the described CV methods. Firstly, we test
the effect of partition orientation on the four local
descriptors, meaning that the prediction results attained
are compared based on the regions in X-,Y-, and Z-
axes. In addition to that the effect of number of par-
titions (regions) the skull is divided is tested. Secondly,
we evaluate the performance of MKL for various fea-
ture combinations, similarly with respect to the three
partition axes.

4.1 Sex determination using 3D local features

To evaluate the performance of the four local descriptors
for sex determination, we have selected three baseline pre-
dictive models: (1) support vector machine (SVM) [41],
(2) kernel extreme learning machine (KELM) [42], and
(3) sparse representation classifier (SRC) [43]. The stan-
dard protocol used throughout this paper is that the input
dataset is divided into 60 and 40% as training and testing
set, respectively, by random sampling without replace-
ment. In the training stage, a five-fold cross-validation
is performed to derive the best regularization value C
(between 2710 and 219) for the three classifiers. Once
training is completed, the skulls are classified into male or
female using the separate unused testing set. The experi-
ments are repeated 10 times, and the average is computed
as the sex prediction rate.

4.1.1 Effect of number of regions and partition orientation
on sex prediction

We now simultaneously demonstrate how the orientation
of partition and the number of skull partition influence
the results of sex prediction. These evaluations are divided
into two categories, where the first evaluation involves
using ordinary 3D local descriptors to train the three pre-
dictive models and the second evaluation involves using
KPCA and KSVD to learn compact representation from
the feature vectors before classification. In the first eval-
uation, the skulls are initially partitioned into different
regions, and the local features are extracted, aggregated,
and finally concatenated from all regions before serving
as an input to the predictive models. It can be noticed
in Fig. 7 that partitions derived from the z-axis gener-
ally provided the best prediction rates, particularly using
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MeshLBP, as these results remain consistent across the
three predictive models. When the MeshLBP features
extracted from partitions in the z-axis are used to train the
KELM classifier, the highest prediction rate obtained is
80.25%; SRC classifier showed similar performance with a
prediction rate of 80%, while with SVM classifier, the high-
est prediction rate is 82%. Moreover, in all experiments,
MeshLBP showed better performance than the region
area, ShapeDNA, SI-HKS, LD-SIFT, and spin image local
descriptors.

Whereas, the Y-axis in some cases showed compara-
ble trend in performances, especially using LD-SIFT and
Spin image local descriptors, which also remain consistent
across the three classifiers. For instance the prediction
results of spin image are 76.25, 73.5, and 73% using KELM,
SRC, and SVM classifiers respectively.

However, for MeshLBD, it can be seen that the predic-
tion results achieved from partitions in X- and Y-axes are
lower than those from Z-axis. Besides that, we observed
that the effect of increase in number of partitions is not so
evident in all experiments, except for MeshLBP where the
prediction results peaked at five regions before deteriorat-
ing as the number of partitions approach 99 regions. With
region area, ShapeDNA, and SI-HKS, the performances
are neither influenced by orientation of partition nor by
number of regions as the prediction rate is generally less
than 70% in the three predictive models, thus leading to
the conclusion that the SI-HKS descriptor is not suitable
for sex prediction from human skulls.

In the second evaluation, we used KSVD and KPCA
to learn compact representations from the local fea-
tures prior to classification, which significantly reduce the
dimensionality of the feature vectors. Using KSVD, we
noticed a slight improvement in the performance of the
local descriptors. For instance, MeshLBP increased from
82 to 83% using KELM classifier, while the results using
SRC and SVM also increase by at least 1%. Similarly, the
prediction rates of LD-SIFT and spin image increased
across the three classifiers. Meanwhile, a similar trend in
prediction results with respect to the orientation of par-
titions can be observed from the results in Fig. 8, as the
Y-axis tends to exhibit comparable performance to the
Z-axis partitions.

Using KPCA, we further observed improvement in pre-
diction results, especially in the case of spin image and
MeshLBP where the prediction rates increased to 85.5 and
86% respectively, as depicted in Fig. 9. In addition, it is
obvious that the partitions derived from the Z-axis pro-
vided better results than X- and Y-axes. Also, increasing
the number of partitions resulted in reduced prediction
results for MeshLBP; however, the trend is only slightly
evident for spin image and LD-SIFT. Overall, SVM classi-
fier showed better prediction performance than SRC and
KELM.
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4.2 Sex determination using MKL on multiple features

In this experiment, we used the linear kernel function for
mapping each local feature, which are then combined in
the MKL framework. We focus on LD-SIFT, spin image,
and MeshLBP since these three feature representation
methods showed better performance than region area,
ShapeDNA, and SI-HKS in Section 4.1. Within this frame-
work, four different sets of combination are performed
with respect to the orientation of partition (X, ¥, Z) and
number of regions (1 : 2 : 99). Particularly, we have
examined the integration of:

LD-SIFT + MeshLBP

Spin Image + MeshLBP

Spin Image + LD-SIFT

Spin Image + LD-SIFT + MeshLBP

The results attained are illustrated in Fig. 10. Learning
a multi-kernel representation for LD-SIFT + MeshLBP,
the best prediction rates attained are 72.5% (X-axis),
71.5% (Y-axis), and 78% (Z-axis). With spin image +
MeshLBP, the prediction rates are 72% (X-axis), 70%

(Y-axis), and 86% (Z-axis), while the results of spin image
+ LD-SIFT are 79.5% (X-axis), 72.5% (Y -axis), and 85.5%
(Z-axis). Similar to the case of single descriptor, it can
be noted that the partitions derived from the Z-axis
provided better performance than X- and Y-axes in all
experiments.

Moreover, the influence of number of regions is slightly
evident on the results of spin image + LD-SIFT and Spin
+ MeshLBP, as the peak recognition rate is achieved at
five regions before receding as the partitions approach 99
regions. However, we observed no significant impact of
number of region on the prediction rates of LD-SIFT +
MeshLBP. Finally, we attempted to combine spin image +
LD-SIFT + MeshLBP, but the prediction results decreased
on the three orientations of skull partition, indicating less
compatibility among the three features. Quite interest-
ingly, spin + MeshLBP produced the most compatible
combination as the prediction rate of 86% is comparable to
the benchmark attained with single descriptor. We denote
from these experiments that MKL is useful for sex pre-
diction from human skulls albeit the selection of the most
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compatible 3D local descriptor seems to be necessary.
Unlike the soft margin MKL which tries to induce infor-
mation from multiple sources, we used the hard margin
MKL based on primal formulation, which imposes penalty
on the features and selects those that best optimize the
objective. However, the results as shown in Fig. 11 are not
so promising compared to the soft margin MKL. This can
be attributed to the fact that the hard margin MKL tends
to be dependent on the discriminative ability of the base
kernels [44]. Thus, in a case where the single features are
already discriminant, the hard margin MKL will be unable
to exhibit any better performance than the single features.
On the other hand, this indicates that if the single fea-
tures are not discriminant such as heat kernel signature or
ShapeDNA, their combination will have a negative impact
on the performance unless they can be singled out.

4.3 Comparison with forensic approach
For the sake of completeness, we compared the perfor-
mance of the proposed CV methods with conventional

forensic estimation method [45] as shown in Table 1.
Prior to describing the forensic method, it is worth
emphasizing that the objective of this paper is to demon-
strate the potential of computer vision methods for sex
determination from human skull. Despite the fact that
the 3D feature descriptors adopted in this paper are com-
monly used in the domain of computer vision, from a
general perspective, a framework which integrates several
stages of pre-processing—feature extraction, multiregion
representation, and classification—has not been reported
in the literature. This differentiates the proposed frame-
work from the existing forensic methods, and such frame-
work serves as an incentive for forensic anthropologists
to approach sex estimation problem from a completely
different perspective.

The conventional forensic method [45] is based on
traditional morphometrics, where 22 estimation param-
eters are measured covering anatomical locations of 87
cranial samples (45 males and 42 females). These 87
samples are drawn the same dataset we obtained from
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the Hospital Kuala Lumpur (HKL). The measurements
include the maximum cranial length, maximum cra-
nial breadth, cranial base length, basion-bregma height,
bizygomatic breadth, maximum frontal breadth, min-
imum frontal breadth, basion prosthion, upper facial
height, nasal height, nasal breadth, orbital height of the
right eye, orbital height of the left eye, orbital breadth
of the right eye, orbital breadth of the left eye, bior-
bital breadth, auriculo-bregmatic height of the right side,
auriculo-bregmatic height of the left side, naso-occipital
length, mastoidal bregma height of the right side, mas-
toidal bregma height of the left side, and nasion bregma
height. Through independent ¢ test, the authors were
able to deduce the difference between male and female
categories. Discriminant function analysis(DFA) is then
used to generate equations for modeling the measure-
ments and regression analysis to classify the samples into
their respective classes. The prediction result from the
study obtained through cross-validation is between 78.2
and 86.2%.

5 Discussion and conclusion

Sex determination from human skull is a very essen-
tial aspect of forensic examination. In the past few
decades, forensic anthropologists have suggested two
main approaches for determining sexual dimorphic char-
acteristics from human skull, which are morphologi-
cal assessment and morphometric analysis. These two
methods either visually assess specific cranial sites that
possess sexual dimorphism or perform inter-distance

Table 1 Performance comparison with traditional morphometrics
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measurement between anatomical landmarks that have
been carefully annotated.

Probing from a different perspective and diverging com-
pletely from the conventional forensic approaches, we
suggest a possible framework for sex determination from
human skull based on computer vision techniques, which
include automatic representation of human skulls with
advanced local shape features and learning of compact
and discriminant representation from the extracted fea-
tures. We introduced multi-region-based representation
that are derived from partitioning the skulls along three
main axes (X, ¥, Z) which are anatomically equivalent to
the sagittal, coronal, and axial axes. Inclusive of this is
the aggregation of several region descriptors into com-
pact features that represent each region with better dis-
criminant capabilities. Also, we examine the influence of
increase in number of regions and orientation of partition
on prediction results.

From a general perspective, our experimental results
give indication that these CV methods are suitable
for sex determination with the best prediction rate of
86% through KPCA subspace representation of compact
MeshLBP features from five sub-regions of the skull.
Intuitively, we discovered that orientation of partition
have significant influence on the results of MeshLBDP, as
the difference between the results obtained from using
partitions derived from Z-axis are superior to those from
X- and Y-axes. However, this observation is not so evi-
dent in the case of LD-SIFT and spin image because
the results of X-axis are quite competitive with those
obtained from Z-axis. We mainly attribute this to the fact
that spin image are LD-SIFT descriptors embodying rota-
tion invariance property. It is also discovered from the
experiments that increase in number of partition does
not affect the performance of LD-SIFT and spin image,
but MeshLBP seems to be sensitive to increase in num-
ber of regions. Furthermore, we presented the application
of MKL on multiple feature set for cranial sex estima-
tion. The framework provided possibility of integrating
two or more 3D local shape descriptors with differing
representation properties. It was discovered from the
experiments that MKL is similarly suitable for cranial sex
estimation with the fusion of spin image + MeshLBP,
revealing the most compatibility with a prediction rate
of 86%. Quite interestingly, similar trends observed from
previous experiments with respect to orientation of par-
tition and number of regions remain valid in the MKL
framework.

Estimation method Cranial representation

Prediction model Prediction rate (%)

Morphometrics 22 estimation parameters

Proposed MeshLBP

DFA and regression analysis 78.2-86.2
KPCA-SYM 86
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Comparing the results of CV methods with those of
standard forensic approach, our results are within the
often reported sex prediction range (70-90%) using mor-
phometric or morphological assessment [14, 46]. This
novel perspective has introduced an alternative and effi-
cient approach in forensic anthropology, which could
potentially set the path to bridging the semantic gap
between visual assessment and perceived dimorphic char-
acteristics. Besides, we are able to discard the challenge
of incomplete anatomical landmarks, which affects the
performance of morphometric analysis. From our exper-
iments, we can make three fundamental suggestions for
potential future studies:

e Extracting features from multiple regions is
important for skull representation as it tends to
out-perform holistic representation of the skull.

e Feature aggregation instead of long-tailed
concatenation should be considered to compactly
represent each local region of the skull as it makes the
features more distinctive with less correlation among
features from the same class.

e Prediction performance with respect to orientation of
partition is highly dependent on the properties of the
local shape descriptor. For instance, MeshL.BP
showed great performance along the Z-axis but
deteriorated significantly along X- and Y-axes in all
experiments, while the results of spin image and
LD-SIFT on X- and Z-axes are quite comparable.
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