
IPSJ Transactions on Computer
Vision and Applications

Tao et al. IPSJ Transactions on Computer Vision and
Applications  (2017) 9:14 
DOI 10.1186/s41074-017-0025-4

RESEARCH PAPER Open Access

Global ray-casting range image
registration
Linh Tao1*, Tam Bui2 and Hiroshi Hasegawa3

Abstract

This paper presents a novel method for pair-wise range image registration, a backbone task in world modeling, parts
inspection and manufacture, object recognition, pose estimation, robotic navigation, and reverse engineering. The
method finds the most suitable homogeneous transformation matrix between two constructed range images to
create a more complete 3D view of a scene. The proposed solution integrates a ray casting-based fitness estimation
with a global optimization method called improved self-adaptive differential evolution. This method eliminates the
fine registration steps of the well-known iterative closest point (ICP) algorithm used in previously proposed methods,
and thus, is the first direct global registration algorithm. With its parallel implementation potential, the ray
casting-based algorithm speeds up the fitness calculation for the global optimization method, which effectively
exploits the search space to find the best transformation solution. The integration was successfully implemented in a
parallel paradigm on a multi-core computer processor to solve a simultaneous 3D localization problem. The fast,
accurate, and robust results show that the proposed algorithm significantly improves on the registration problem
over state-of-the-art algorithms.

Keywords: Range image registration, Direct global registration, Adaptive differential evolution, Global optimization,
Ray-casting, 3D localization

1 Introduction
The introduction of commercial depth sensing devices,
such as the Microsoft Kinect and Asus Xtion, has shifted
the research areas of robotics and computer vision from
2D-based imaging and laser scanning toward 3D-based
depth scenes for environment processing. As physical
objects or scenarios are built using more than a single
image, images from different times and positions need to
be aligned with each other to provide a more complete
view. We call the alignment process registration, and it
plays a key role in object reconstruction, scene mapping,
and robot localization applications. Depending on the
number of views that are processed simultaneously, regis-
tration is divided into multi-view [1] and pair-wise cases
[2]. Our paper focuses on the latter case for constructed
range images captured by 3D cameras. From two images,
called the model and the data, the registration algorithm
finds the best homogeneous transformation that aligns
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the data and the model image in a common coordinate
system.
The iterative closest point (ICP) algorithm [3] and its

variants, such as EM-ICP [4] and generalized ICP [5],
have been indispensable tools in registration algorithms.
ICP’s concept and implementation are easy to understand.
It derives a transformation that draws images closer to
each other using their L2 error iteratively. ICP-class algo-
rithms have a drawback for general registration in that
they require a further assumption of near-optimal initial
pose transformation; otherwise, the registration process
is likely to converge to local instead of global or near
global optima. Somemesh and point cloud editor software
programs, such as Meshlab [6], include an ICP built-in
registration tool; however, they require that users perform
manual pre-alignment before ICP can be applied.
To overcome the shortage of ICP-class methods, auto-

matic registration algorithms in general perform two
steps: coarse initialization and fine transformation. If
two point clouds are sufficiently close, the first step
can be omitted. Otherwise, researchers are faced with
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a big challenge. Two approaches for coarse transforma-
tion, pre-alignment estimation, or initialization exist: local
and global. The former uses local descriptors (or sig-
natures), such as PFH [7] and SIFT [8], which encode
local shape variation in neighborhood points. If the key
points of these descriptors appear in both registered point
clouds, the initialization movement can be estimated by
using sample consensus algorithms, such as RANSAC [9].
Unfortunately, it is not always guaranteed that these sig-
natures will appear in both registered point clouds. On
the other hand, global approaches, such as Go-ICP [10]
and SAICP [11], take all the points into account. The com-
putation cost is the biggest problem in this approach. In
big number data cases, the computation cost becomes
large. By virtue of new search algorithms, in particular
heuristic optimal methods, and the increase in computer
speed achieved by using multi-core computer processor
units (CPUs) and graphic computation units (GPUs) [12],
it is possible to find reasonable solutions using global
approaches for the registration problem. When the coarse
transformation has been estimated, the ICP algorithm is
an efficient tool for finding the fine transformation.
By integrating optimal search tools with an ICP algo-

rithm, researchers have created hybrid algorithms that
integrate global optimizers with ICP. However, this
approach has its limitations. SAICP, a parameter-based
algorithm, uses simulated annealing (SA) [13] as a search
engine to find the best movement combination of rota-
tion angles and translation. However, SA is not sufficiently
effective to allow its application to a complicated fitness
function, where the potential of a failed convergence is
high. Go-ICP converges slowly, since it uses the branch-
and-bound (BnB) method, a time consuming and non-
heuristic method, as a search algorithm to ensure a 100%
convergence rate. In addition, ICP algorithms frequently
include a kd-tree structure for searching corresponding
points. Using the kd-tree nearest neighbor search method
also leads to a high computation cost and a long runtime.
In this paper, a new global direct registration method

for 3D constructed surfaces captured by range cameras in
cases where the initialization is not good is proposed.

- It eliminates the ICP algorithm from the registration
process and thus becomes a direct method.

- As other global registration methods, the new
method requires no local descriptors and operates
directly on raw scanning data.

- The method uses the improved self-adaptive
differential evolution (ISADE) algorithm [14] as a
search engine to find the global minima as a direct
method that does not use a fine registration
procedure such as ICP.

- Furthermore, ray casting-based error calculation
reduces the computation cost and runtime because

of the potential for using parallelized computation.
CPU-based parallel computing procedures allow the
algorithm to find the solution at a rate equivalent to
the online rate.

The structure of this paper is as follows.

- Section 1 comprises the introduction.
- In Section 2, the classic and up-to-date methods of
range image registration are presented.

- In Section 3, the methodology and the new approach
of the proposed method are provided.

- In Section 4, the experiments and results are
described.

- In Section 5, the discussion and conclusions are
presented.

2 Range image registration
This part summarises some approaches for global range
image registration problem up to date.

2.1 Registration error function and ICP approach
SVD and PCA [15] are integrated with ICP in classical
methods and global search algorithms are integrated with
ICP in most current hybrid methods. In this integration,
SVD and PCA find the coarse transformation while ICP is
the fine transformation estimation tool. The original ver-
sion of the ICP algorithm relies on the L2 error to derive
the transformation (rotation R ∈ SO3 and translation
t ∈ R3), which minimizes the L2 type error:

E(R, t) =
n∑

i=1
ei(R, t) =

n∑

i=1
|Rxi + t − yj∗ | (1)

where X = {xi}, {i = 1, 2, 3, . . . ,m} is the model point
cloud and Y = {yj}, {j = 1, 2, 3, . . . , n} is the data point
cloud, xi and yj ∈ R3 are the coordinates of the points
in the point clouds, R and t are the rotation and transla-
tion matrix, respectively, yj∗ is the corresponding point of
xi denoting the closest point in data point cloud Y. R and
t are determined by Roll-Pitch-Yaw movement of three
rotation angles (α,β , γ ) and translation values (x, y, z).
Variants of the ICP algorithm rely on different distance

categories to define the closest points. Point-to-point dis-
tance and point-to-plane distance are two popular exam-
ples. Equation 2 presents the former case.

j∗ = argmin
j∈{1,...,n}

||Rxi + t − yj|| (2)

The following iterative process is designed to achieve
the final transformation.

1. Compute the closest model points for each data
point as in Eq. 2.

2. Compute the transformation R and t based on the
error obtained using Eq. 1.
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3. Apply R and t to the data point clouds.
4. Repeat steps 1, 2, and 3 until the error obtained using

(1) is smaller than a set tolerance level or the
procedure reaches its maximum iteration.

Step by step, the data point cloud becomes closer to the
model point cloud and the process stops at local minima.
ICP’s variants, such as LMICP [16] and SICP [17], use dif-
ferent methods to calculate the transformation from error
E(R, t). A well-known accumulation registration method
in the KinectFusion algorithm [18] uses ICP to register
two consecutive frames. The transformation matrix for
the current frame is estimated by multiplying the matrices
from the previous registration steps.

2.2 Global hybrid registration algorithm
ICP algorithms constitute the most suitable method for
registering close or pre-aligned point cloud data. In other
cases, the algorithm frequently converges incorrectly.
Global search algorithms are suitable for solving this prob-
lem, since they can find the global instead of the local
minima. To reduce the burden of the global search algo-
rithm, researchers frequently flatten the search space by
using ICP. Figures 1 and 2 show an example of ICP’s oper-
ation as a flattening tool. In Fig. 1, from any beginning
point, after many iterations, ICP finds the nearest local
optima point. Figure 2 shows that a complex fitness func-
tion (colored black) becomes a simpler one (colored red).
As a result, global search methods are able to find the
global minima more effectively.
The integration is effective in the case of point cloud

data where the point number is small. For cases where

the point number is large, the hybrid approach with ICP
becomes slow. This method cannot therefore be imple-
mented in real-time applications.

3 The new direct global approach
With the newly developed global search algorithms, flat-
tening using ICP inner loops in registration becomes
redundant. Our method integrates a new global search
algorithm, ISADE, which is suitable for complicated fit-
ness functions when the flattening process is not per-
formed, and a ray casting-based corresponding search
method to accelerate the objective function calculation in
the registration procedure.

3.1 Ray-casting for fast corresponding point
determination on constructed range image

The KinectFusion algorithm, a real-time scene recon-
structing pipeline, uses ICP as the only method for regis-
tering two continuous frames. The procedure requires a
powerful GPU to speed up calculations and reduce run-
time. However, global registration algorithms calculate a
thousand times more error functions than ICP and thus,
so that these algorithms can be applied online or using
less powerful processors, faster error calculation methods
must be included.
ICP algorithms use the kd-tree [19] structure to speed

up the process of determining j∗ in Eq. 2. The com-
plexity of the kd-tree nearest neighbor search algorithms
is O(log(n)), where n is the set number of the search
points. Figure 3 shows an example of the true clos-
est corresponding points of the model and data point
clouds.

Fig. 1 Global searching algorithm with ICP integrated
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Fig. 2 Example of flatten objective function after ICP in red color
where original function is in black

Ray casting [20] is one of the most basic of the many
computer graphics rendering methods. The idea behind
the ray-casting method is to direct a ray from the eye
through each pixel and find the closest object blocking
the path of the ray. Using the material properties and light
effect in the scene, rendering methods can determine the
shading of the object. Some hidden surface removal algo-
rithms use ray casting to find the closest surfaces to the
eye and eliminate all others that are at a greater distance
along the same ray. The Point Cloud Library [21] uses ray
casting as a filtering method; it removes all points that are
obscured by other points.
We apply ray casting to find the approximated clos-

est point using a range camera model. Constructed range
images or point cloud data are frequently captured by a
3D range camera, where a range image can be consid-
ered a 2D gray image, G; the value of each pixel shows the
depth of a point. To simplify the problem, we do not take
distortion into consideration.

zi,j = Gi,j (3)

where zi,j is the depth of the image at pixel column i and
row j.

Fig. 3 Closest corresponding point using kd-tree. Data points are in
blue and model points are in red

Equation 4 converts range image data points to real 3D
depth data {x, y, z} in R3.

xi,j = (i − cx)Gi,j/fx (4a)

yi,j = (j − cy)Gi,j/fy (4b)

zi,j = Gi,j (4c)
where fx, fy, cx, and cy are the intrinsic parameters of the
depth camera.
Inversely, pixel position i, j is to be calculated. Figure 4

shows the method’s idea.
Using the corresponding points obtained in the ray-

casting step, we determine the depth difference �zi,j for
the next step of calculating the objective function for the
global search method, as

�zi,j(R, t) =
{
zXi,j − zYR,t

i,j
0

if |�zi,j(R, t)| < thresthold
otherwise

}

(5)

where R and t are the rotation and translation matrix,
respectively, zXi,j is the depth of the model point cloud, and
zY (R,t)
i,j is the depth of the data point cloud after applying
the rotation and translation matrix with i, j from the ray
casting process.
The ray-casting method is simple and fast (with a com-

plexity ofO(1)) and, more importantly, potentially parallel
computing can be applied.

3.2 Objective function
Global optimization methods use fitness or objective
functions to find the transformation that drives the fit-
ness function to the smallest value. We propose a fitness
function F(R, t):

Fig. 4 Ray-casting method for searching corresponding point
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F(R, t) = f(k)
1
k2

n∑

i=1

m∑

j=1
(�zi,j(R, t))2 (6)

where R and t are the rotation and translation matrix,
respectively,m and n are the height and width of the image
frame, and k is the inlier point number.
To gain a smaller error in a larger number of inlier

points, we used an additional function f (k):

f(k) =
{ ∞

1 − k/N if k < N/10
k � N/10

}
(7)

where N is the number of points in the data point cloud.
The ray-casting-based method makes the algorithm

run significantly faster than the kd-tree-based approach.
However, since a global search algorithm handles a
large number of points at a huge computation cost, we
take parallel implementation into consideration. Since in
most computers a multi-core processor is available, using
the CPU for parallel computing is convenient in most
applications. In addition, CPU multi-core parallel imple-
mentation is even easier with OpenMP library [22]. Fur-
thermore, the ray-casting process adapts well to parallel
computing, and the corresponding points can be calcu-
lated in different processes or threads.

3.3 ISADE, an efficient improved version of differential
evolution algorithm

3.3.1 Differential evolution
Differential evolution (DE) is an evolutionary opti-
mization technique originally proposed by Storn and
Price [23], characterized by operators of mutation and
crossover. In DE, the scaling factor F and crossover rateCr
determine the correction and speed of convergence, while
another important parameter, NP, the population size,
remains a user-assigned parameter to handle problem
complexity. Figure 5 shows pseudo-code or implementa-
tion flowchart of DE algorithms.
a) Initialization in DE The initial population was gen-

erated uniformly at random in the range lower boundary
(lb) and upper boundary (ub).

XG
i = lbj + randj(0, 1)(ubj − lbj) (8)

where randj(0, 1) a random number ∈[ 0, 1].
b) Mutation operation In DE, there are various mutation

schemes to create mutant vectors VG
i = (

VG
i,1, . . . ,V

G
i,D

)

for each individual of population at each generation G.
XG
i is target vector in the current population, D is vector

dimension number.

DE/rand/1 : VG
i,j = XG

r1,j + F
(
XG
r2,j − XG

r3,j

)
(9a)

DE/best/1 : VG
i,j = XG

best,j + F
(
XG
r1,j − XG

r2,j

)
(9b)

Fig. 5 DE implementation process

DE/currenttobest/1:VG
i,j=XG

i,j+F
(
XG
best,j−XG

i,j

)
+F

(
XG
r1,j−XG

r2,j

)

(9c)

DE/rand/2 : VG
i,j = XG

i,j+F
(
XG
r2,j − XG

r3,j

)
+F

(
XG
r4,j − XG

r5,j

)

(9d)

DE/best/2 :VG
i,j =XG

best,j+F
(
XG
r1,j − XG

r2,j

)
+F

(
XG
r3,j−XG

r4,j

)

(9e)

DE/randtobest/1:VG
i,j=XG

best,j+F
(
XG
best,j−XG

r2,j

)
+F

(
XG
r2,j−XG

r3,j

)

(9f)

where r1, r2, r3, r4, and r5 are randomly selected integers in
the range [ 1,NP].
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c) Crossover operation After mutation process, DE per-
forms a binomial crossover operator on XG

i and VG
i to

generate a trial vector UG
i = (

UG
i,1, . . . ,U

G
i,D

)
for each

individual population i as shown in Eq. 10.

UG
i,j =

{
VG
i,j if randj � Cr or j = jrand

XG
i,j otherwise

}
(10)

where i = 1, . . . ,NP, j = 1, . . . ,D , jrand is a ran-
domly chosen integer in [ 1,D] , randj(0, 1) is a uniformly
distributed random number between 0 and 1 generated
for each j and Cr ∈[ 0, 1] is called the crossover control
parameter. Using jrand ensures the difference between the
trial vector UG

i and target vector XG
i .

c) Selection operation The selection operator is per-
formed to select the better solution between the target
vector XG

i and the trial vector UG
i entering to the next

generation.

XG+1
i =

{
UG
i if f (UG

i ) � f (XG
i )

XG
i otherwise

}
(11)

where i = 1, . . . ,NP,XG+1
i is a target vector in the next

generation’s population.

3.3.2 Improvement of self-adapting control parameters in
differential evolution

a) Adaptive selection learning strategy in mutation opera-
tor In our study of ISADE, we randomly chose three muta-
tion schemes: DE/best/1/bin, DE/best/2/bin, and DE/rand
to best/1/bin. DE/best/1/bin and DE/best/2/bin have a
good convergence property, and DE/rand to best/1/bin
has a good population diverse property. The probability of
applying these strategies is equal at values of p1 = p2 =
p3 = 1/3.

DE/best/1 : VG
i,j = XG

best,j + F
(
XG
r1,j − XG

r2,j

)
(12a)

DE/best/2 :VG
i,j =XG

best,j+F
(
XG
r1,j−XG

r2,j

)
+F

(
XG
r3,j − XG

r4,j

)

(12b)

DE/randtobest/1:VG
i,j=XG

best,j+F
(
XG
best,j−XG

r2,j

)
+F

(
XG
r2,j−XG

r3,j

)

(12c)

where r1, r2, r3, r4, and r5 are randomly selected integers in
the range [ 1,NP], where NP is the population size.
b) Adaptive scaling factor To achieve a better perfor-

mance, ISADE gives the scale factor F a large value initially
to allow better exploration and a small value after the
generations to allow appropriate exploitation. Instead of
using sigmoid scaling in Eq. 13 taken from Tooyama and
Hasegawa’s study on APGA/VNC [24], ISADE adds a new
factor to calculate F as shown in Eq. 14.

Fi = 1

1 + exp
(
α ∗ i−NP/2

NP

) (13)

Fi = Fi + Fmean
i

2
(14)

in which Fmean
i is calculated as Eq. 15.

Fmean
i = Fmin + (Fmax − Fmin)

(
imax − i
imax

)niter
(15)

where Fmax and Fmin denote the lower and upper bound-
ary condition of F with recommended values of 0.8 and
0.15, respectively. i, imax, and niter denote the current, max
generation, and nonlinear modulation index as in Eq. 15.

niter = nmin + (nmax − nmin)

(
i

imax

)
(16)

where nmax and nmin are typically chosen in the range
[ 0, 15]. Recommended values for nmin and nmax are 0.2
and 6.0 respectively.
c) Crossver control parameter ISADE is able to detect

whether the height of Cr values are useful. The control
parameter Cr is assigned as

Ci+1
r =

{
rand2 if rand1 � τ

Ci
r otherwise

}
(17)

where rand1 and rand2 are random values ∈[ 0, 1] , τ rep-
resents the probability to adjust Cr , which is also updated
using

Ci+1
r =

{
Crmin Crmin � Ci+1

r � Crmedium
Crmax Crmedium � Ci+1

r � Crmax

}
(18)

whereCrmin ,Crmedium , andCrmax denote a low value, median
value, and high value of the crossover parameter, respec-
tively. We use recommended values of τ = 0.1,Crmin =
0.05,Crmedium = 0.50, and Crmax = 0.95.
d) Combination of ISADE and ray-casting ISADE elimi-

nates tuning tasks for the problem-dependent parameters
F and Cr . With simple adaptive rules, the computa-
tion complexity of this new version of the DE algorithm
remains the same as that of the original version. All
the above ideas and theories of ISADE algorithm and
ray-casting method are implemented as in the flowchart
shown in Fig. 6.

4 Experiment and results
This section describes experiments that were conducted
using the proposed method in real range image data reg-
istration and presents the results. We integrated different
global search methods with the ray casting-based algo-
rithm in order to obtain a comparison between ISADE and
the state-of-the-art methods as follows.

1) SA proposed in Luck et al.’s paper, Registration of
range data using a hybrid simulated annealing and
iterative closest point algorithm.
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Fig. 6 ISADE implementation process with ray-casting corresponding
method

2) Particle swarm optimization (PSO) proposed in Talbi
et al.’s paper, Particle swarm optimization for image
processing [25].

3) Genetic algorithm (GA) proposed in Valsecchi et al.’s
paper, An image registration approach using genetic
algorithms [26].

4) DE proposed in Falco et al.’s paper, Differential
evolution as a viable tool for satellite image
registration [27].

We also calculated the ray casting-based error of the
KinectFusion and Go-ICP algorithms for further com-
parison. All algorithms were implemented in C++ and
compiled with GNU/g++ tool.

4.1 Range image dataset
In our experiments, a number of pair-wise registra-
tions was conducted using well-known depth data,

“RGB-D Dataset 7-Scenes,” taken from the Kinect
Microsoft Camera downloaded from the Microsoft
Research Website, http://research.microsoft.com/en-us/
projects/7-scenes/. Specifically, Figs. 7 and 8 show all the
scenes: Chess, Fire, Heads, Office, Pumpkin, RedKitchen,
and Stairs. The details of the data used in the registration
experiments are as follows.
Chess dataset: image sequence 2, frame 960 vs frame

980.
Other datasets: image sequence 1, frame 000 vs frame

020.
These “PNG” format depth images are sub-sampled into

a smaller resolution of 128 × 96, which is five times
smaller than the original resolution of 640 × 480 in each
dimension. The purpose of using a dataset with a smaller
number of points is to achieve a suitable runtime while
preserving robustness and accuracy.

4.2 Parameter settings
For each method, 30 runs were performed. The search
space had rotation angles and translation limited at
[−π/5,π/5] and [−1, 1] separately. This means that the
limitation of the rotation angles was 36◦ and of the trans-
lation was 1 m.
The algorithm parameters shown in Table 1 constitute

the configuration for all the algorithms. All methods were
run on a desktop PC powered with an Intel core I7-4790
CPU 3.60 GHz × 8 processor, 8 GB RAM memory and
Linux Ubuntu 14.04 64-bit Operation System. The new
algorithm C++ code was written based on reference from
Andreas Geiger’s LIBICP code [28].

4.3 Comparison with KinectFusion algorithm
Accompanied by depth ranger images, “RGB-D Dataset
7-Scenes” provides homogeneous camera to world trans-
poses at each frame calculated using the KinectFusion
algorithm. We converted those camera transposes into
transformation matrix between two frames as

Tj
i = T−1

i ∗ Tj (19a)

Tj
i =

⎡

⎢⎢⎣
Rj
i tji

0 0 0 1

⎤

⎥⎥⎦ (19b)

where Tj
i is the transformation matrix to move frame j to

align with frame i,Ti and Tj are the homogeneous trans-
pose matrix for the camera at frame i and j, respectively,
and Rj

i and tji are the rotation and translation matrix of Tj
i ,

respectively.

http://research.microsoft.com/en-us/projects/7-scenes/
http://research.microsoft.com/en-us/projects/7-scenes/
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Fig. 7 RGB-D Chess, Fire, Heads, Office dataset for experiments

Rj
i and tji are applied to ray-casting error calculation

methods for two frames, as in Eq. 6, to describe the
errors of the KinectFusion algorithm. Table 2 presents
the mean errors of the proposed method in comparison
with the error of the KinectFusion algorithm. The signifi-
cantly smaller mean errors of the proposed method prove
its superiority to the KinectFusion algorithm registration
pipeline.
Figures 9 and 10 visually show the registration results

of the proposed algorithm for the seven scenes in
center and those of KinectFusion on the left hand

side, to provide a visual comparison. The seven scenes
included are Chess, Fire, Heads, Office, Pumpkin, Red-
Kitchen, and Stairs. The model point clouds are col-
ored red, and the data point clouds are colored
green.
In these figures, the proposed algorithm outperforms

KinectFusion is clearly seen. Even in the best case
of KinectFusion, such as Stairs or RedKitchen, the
overlapping regions, where the two colors are mixed
together, are not as clearly seen as in the results of the
proposed algorithm.

Fig. 8 RGB-D Pumpkins, RedKitchen, Stair dataset for experiments
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Table 1 Algorithm configuration

Algorithm DE GA SA PSO Go-ICP

Parameters F0 = 0.8 Pc = 0.95; α = 0.995 elites = 4 trimFraction = 0.0

Cr = 0.9 Pm = 0.1; neighbors = 5

DE/rand/1/bin elites = 5 c1 = c2 = c3 = 2.1 distTransSize = 50

Maxgen 100 100 3000 100;

Population 30 30 30 data subsample = 1000 points

An example of applying the new method to consec-
utive localizations can be seen in Fig. 11. The pump-
kin 3D scene, which is built from seven different range
images (frame 000, 020, ..., 120), visually shows the accu-
racy of the proposed method at various percentages of
overlapping regions. The different frames are in differ-
ent colors. A video at https://www.youtube.com/watch?v=
sgaUry5qsxU gives a clearer view.

4.4 Comparison with Go-ICP algorithm
From authors contributed code [29], we performed exper-
iments to compare our method with Go-ICP on accu-
racy, runtime, and robustness. Go-ICP configuration
parameters were set as in Table 1 with the identical
searching boundary with other methods. distTransSize
is the number of nodes in translation searching bound-
ary. It was set to 50 or translation resolution is at
40 mm. Raising accuracy by increasing distTransSize to
500 or 4 mm resolution effort failed due to infinite run-
time. Go-ICP were able to register Heads and Office
datasets at distTransSize of 100 with runtime presented in
Table 5.
The disadvantage of big resolution could be compen-

sated by inner ICP loops; however, the smaller the resolu-
tion, the more accurate the algorithm is. We set the data
subsample to 1000; Go-ICP reaches infinitive runtime at
the original 128 × 96 resolution.
Together with KinectFusion and our method errors,

Table 2 presents the mean errors of Go-ICP algorithm
where “nan” stands for undefined result in the case of
infinitive runtime and “inf” stands for wrong convergence
with few overlapse points. Over all, only heads and office
showed good convergence with small error and run time.
However, those small errors are still bigger than the new
method.

Figures 9 and 10 also show the registration results of Go-
ICP algorithm on the right side together with newmethod
results in the center and KinectFusion algorithm result
on the left side. From those figures, the new method bet-
ter performance is clearly seen. In the case of RedKitchen
dataset, the wrong convergence results of Go-ICP were
observed, the error was small because of small over-lapsed
percentage.
Average runtime for Go-ICP on different datasets are

presented in Table 5 where average run times of the new
algorithm at different generation numbers are presented.
In the table, “inf” values stand for infinitive runtime. Go-
ICP was fast in case of heads dataset or extreme slow for
the case of Chess dataset.
Over all, the new methods outperformed Go-ICP on

experiment datasets in accuracy, runtime, and robustness.

4.5 Comparison between different optimization
algorithms

Tables 3 and 4 show the experimental results of all the
integrations and methods in four categories: min, max,
mean, and standard deviation.
The smaller means and standard deviations for every

dataset in comparison with the other methods show the
accuracy and robustness of the new search engine as com-
pared to the state-of-the-art search algorithms. In some
cases, the experimental results show that the other inte-
grations performed better than KinectFusion. The ICP
accumulating error is the reason for this poor perfor-
mance.

4.6 Iterations vs convergence
In Fig. 12, we compare the robust results of conver-
gence of the registration of the seven scenes for a
small number of iterations between using ISADE and

Table 2 Error comparison between new method, KinectFusion, and Go-ICP algorithms

Chess Fire Heads Office Pumpkin RedKitchen Stairs

Our method 0.10230 0.03179 0.01000 0.03096 0.05563 0.03481 0.00883

KinectFusion 22.37200 0.24311 2.99067 3.85941 0.11136 0.09836 0.01561

Go-ICP nan 0.825212 0.01832 0.358507 inf 1.5387 2.28615

The boldface entries are for emphasis for better result in comparison between the new method with other methods

https://www.youtube.com/watch?v=sgaUry5qsxU
https://www.youtube.com/watch?v=sgaUry5qsxU
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Table 3 Results of Chess, Fire, Heads, and Office datasets

Scene name Algorithm Min Max Mean St. dev.

Chess ISADE 0.10047 0.11187 0.10230 0.002821482

KinectFusion DE 0.17453 3.92808 0.29860 0.112087291

ref: 22.372 GA 1.44923 1.80180 2.53723 0.691936150

SA 1.11736 2.55157 1.65871 0.400817542

PSO 1.19899 2.58186 1.72316 0.459892382

Fire ISADE 0.03169 0.03196 0.03179 8.70855E−005

KinectFusion DE 0.03873 0.26059 0.10263 0.066038287

ref: 0.243112 GA 0.22177 3.93133 1.58268 0.913837133

SA 0.15060 0.88670 0.45855 0.249700426

PSO 0.11158 0.63419 0.34592 0.151824890

Heads ISADE 0.00994 0.01016 0.01000 7.01799E−005

KinectFusion DE 0.01276 0.06570 0.02205 0.012768061

ref: 2.99067 GA 0.47056 1.70316 0.97758 0.358190303

SA 0.30740 1.01428 0.65404 0.264058658

PSO 0.20801 1.88772 0.54401 0.463097716

Office ISADE 0.03084 0.03115 0.03096 8.39925E−005

KinectFusion DE 0.03195 0.06436 0.04373 0.009462166

ref: 3.85941 GA 0.24518 4.05346 1.88819 0.928751342

SA 0.10385 2.67972 0.84426 0.720046753

PSO 0.07169 2.08078 0.58507 0.686244921

The boldface entries are for emphasis for better result in comparison between the new method with other methods

DE, where the horizontal axis represents the iteration,
and the vertical axis represents the error. In compar-
ison with ISADE, DE required significant larger iter-
ation number to achieve convergence. With ISADE,
from 70 iterations, all the results show a flat trend

and no new optimal solutions with a significant dif-
ference are found. This iteration number for DE is
120.
These results show that, if we reduce the maximum

number of iterations to 70, the results remain the same.

Table 4 Results of Pumpkin, RedKitchen and Stairs datasets

Scene name Algorithm Min Max Mean St. dev.

Pumpkin ISADE 0.05541 0.05603 0.05563 0.000175987

KinectFusion DE 0.06555 0.16927 0.11105 0.111050113

ref: 0.111361 GA 0.45803 3.15529 1.42922 0.775060060

SA 0.07468 0.90335 0.49504 0.248322702

PSO 0.11181 1.43345 0.36443 0.334116975

RedKitchen ISADE 0.03423 0.03759 0.03481 0.000915588

KinectFusion DE 0.05879 0.60304 0.17479 0.149183155

ref: 0.0983645 SA 0.52141 5.48133 2.07233 1.339500137

GA 0.12508 1.58015 0.62601 0.441544434

PSO 0.05515 2.48188 0.54354 0.671268667

Stairs ISADE 0.00875 0.00898 0.00883 0.000079463

KinectFusion DE 0.00975 0.04665 0.01767 0.009514675

ref: 0.0156084 SA 0.21207 2.24988 1.19252 0.627554990

GA 0.01405 1.08881 0.29528 0.304574563

PSO 0.04632 0.96723 0.25021 0.239971819

The boldface entries are for emphasis for better result in comparison between the new method with other methods
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Fig. 9 First four scenes (Chess, Fire, Heads, Office) registration output example. KinectFusion results are in the left hand side, the new algorithm’s
results are in the center, and Go-ICP algorithm’s results are on the right hand side

Fig. 10 Last three scenes (Pumpkin, RedKitchen, Stairs) registration output example. KinectFusion results are in the left hand side, the new
algorithm’s results are in the center, and Go-ICP algorithm’s results are on the right hand side
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Fig. 11 Office scene reconstructed results from different view angles

Clearly, the smaller the iteration number, the shorter is the
runtime.

4.7 Results from registering in different movement
patterns and frame distances

Figure 13 shows the values of rotation angles (α,β , γ )
in radian and translation distances (x, y, z) in meter of
3D camera movement. Those values were obtained by
using new algorithm to register range images from frame
001 to 060 respectively into the frame 000 of seq-01 in
different datasets. The process stops if the movement val-
ues get over searching boundaries. From all datasets, we
choose three typical movement of Chess, Fire, and Heads

datasets for rotating, sliding, and forwarding with rotating
movements respectively.
The results with no sudden value changing between

two consecutive frames verify the feasibility of applying
the new algorithm in registering range images of different
movement patterns and frame distances.

4.8 Runtime
For the data of 128 × 96 resolution, average runtime for
the proposed method are shown in Table 5. In the results,
the average runtime for registration is around 0.6 s for 150
iterations of all scenes. Since the distance between two
frames is 20, the registering equivalence rate is 33 frames

Table 5 Average running time (in second) on different scenes of new methods and Go-ICP

New methods New method Go-ICP Go-ICP
100 generations 150 generations distTransSize = 50 distTransSize = 100

Chess 0.388414 0.516832 inf inf

Fire 0.385928 0.625765 14.2786 inf

Heads 0.335828 0.562451 0.102944 0.104659

Office 0.378768 0.560734 0.030326 34.411

Pumpkin 0.410615 0.621756 104.468 inf

RedKitchen 0.415258 0.588466 30.3815 inf

Stairs 0.409834 0.597050 188.205 inf
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Fig. 12 Fitness function as iterations of different datasets with ISADE in blue and DE in red color

per second (fps). At this rate, when we move the camera,
the algorithm are able to update the scenarios.
By subsampling the data range image and remaining the

model range image, the new algorithm gain smaller run-
time while error level stays unchanged. Figure 14 shows
the runtime at different level of subsample on the right
hand and the errors in the left hand for the RedKitchen
scenario.

5 Discussion
Image registration has become a very active research
area. Recently, the approach of using EAs, in partic-
ular in new methods, proved their potential for tack-

ling the image registration problem based on their
robustness and accuracy for searching for global opti-
mal solutions. When EAs are used as search tools,
good initial conditions are not necessary for avoiding
local minima while converging to near-global minima
solutions.
We proposed a novel registrationmethod in which a fast

ray-casting-based error calculation is integrated with a
powerful self-adaptive optimization algorithm. The exper-
imental results showed that ISADE is able to find a robust
and accurate transformation matrix, while the ray-casting
method is fast and efficient in calculating error for global
registration problems.
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Fig. 13Movement pattern from Chess, Fire, and Heads scenarios

Amore important point is that, by eliminating inner ICP
loops in hybrid integrations and fine-tuning procedures
applied in previously proposed methods, the newly pro-
posed method becomes the first direct, as well as the first
online potential, global registration algorithm. Its robust-
ness and accuracy were tested and verified in real 3D
scenes captured by a Microsoft Kinect camera.

Currently, the algorithm is implemented using a CPU
parallel procedure. In future work, the new algorithm can
be implemented on a GPU to reduce its runtime and error
while retaining its accuracy and robustness. Furthermore,
the method can be extended for general point clouds
from different sources by using a virtual camera surface
and presenting it as a constructed surface. The proposed

Fig. 14 Runtime and error on subsample point numbers
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method is also potentially suitable for super resolution
range images.
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