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Abstract

Holograms are security features applied to security documents like banknotes, passports, and ID cards in order to
protect them from counterfeiting. Checking the authenticity of holograms is an important but difficult task, as
holograms comprise different appearances for varying observation and/or illumination directions. Multi-view and
photometric image acquisition and analysis procedures have been proposed to capture that variable appearance. We
have developed a portable ring-light illumination module used to acquire photometric image stacks of holograms
with mobile devices. By the application of Convolutional Neural Networks (CNN), we developed a vector
representation that captures the essential appearance properties of hologram types in only a few values extracted
from the photometric hologram stack. We present results based on Euro banknote holograms of genuine and
counterfeited Euro banknotes. When compared to a model-based hologram descriptor, we show that our new learned
CNN representation enables hologram authentication on the basis of our mobile acquisition method more reliably.
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1 Introduction

Holograms or Diffractive Optically Variable Image
Devices (DOVID) change their appearances when viewed
and/or illuminated under different angles (Fig. 1) and
are a means to protect security documents (e.g., ban-
knotes, passports) from counterfeiting. Checking their
authenticity is an important, but still, challenging task.
In practice, the holograms’ grating structures are ana-
lyzed with microscopes or sparse point-wise projection
and recording of the diffraction patterns [1]. For example,
the Universal Hologram Scanner (UHS) [2] is a well known
tool for hologram verification actually used in forensic
analyses, where the holograms’ diffraction patterns are
analyzed at discrete steps over the hologram area.

A guided multi-view approach for hologram acquisi-
tion for mobile devices in order to capture hologram
appearance variations was proposed recently [3], which
further allowed for hologram detection and tracking [4].
A machine vision system combining multi-view and pho-
tometric approaches by acquiring holograms for different
illumination angles with a light-field camera was pro-
posed [5] in a recent publication. As illumination unit, a
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photometric light-dome of 30 ¢cm in diameter compris-
ing 32 LEDs was presented. Despite the availability of
multi-view information, the authors could only make use
of the photometric variation in the data. By modeling
the photometric reflectance properties, they developed a
low-dimensional hologram representation, in which the
essentials of holograms’ appearances are compressed into
only a few hundred vector entries. The properties of that
so called DOVID descriptor were reported recently [6, 7].

We developed a portable ring-light module that can be
mounted to a mobile device to make photometric acqui-
sitions (Fig. 2), similar to the aforementioned illumination
dome. Moreover, we additionally developed a new vector
representation for holograms by means of deep learning
a CNN from the holograms’ photometric image stacks.
While for our data, the modeled DOVID descriptor was
tedious to parameterize and parameterization could only
be accomplished with the aid of counterfeited holograms
at hand, our new learned hologram representation is
solely learned from genuine holograms. Nonetheless, the
description is robust enough, to be able to reliably dis-
tinguish fake holograms from genuine holograms of the
intended type.

The rest of the paper is structured as follows. In
Section 2, we describe the acquisition system comprising
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Fig. 1 Appearances of a Euro 50 hologram illuminated from 12 different directions

the portable ring-light module mounted to a Nexus P6
mobile device. The generation of the new hologram vec-
tor representation is outlined in Section 3. An experi-
mental evaluation and comparison with a model-based
representation based on the data sample described in
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Fig. 2 Mobile photometric hologram acquisition setup

Section 4 is given in Section 5, followed by the summary
and conclusions in Section 6.

2 Mobile photometric hologram acquisition

The appearances of holograms shall be captured in a pho-
tometric image stack, which is a set of images taken from
an object, e.g., a hologram, under different illumination
directions. While similar work [6] used a rigid, rather
bulky setup of a camera and a large illumination device,
we intend to do acquisitions with a mobile device. In par-
ticular, for this study, we used a Nexus 6P from Google
comprising a 12.3 MP camera. For that device, we devel-
oped an illumination module (Fig. 3) comprising a 3D
printed retainer, a LED strip of 24 individually operable
LEDs (WS2812b) mounted to the inner walls of the cylin-
drical dome (Fig. 4), and corresponding controls so that
the LED module was controllable via the mobile device.

Due to the small diameter of the LED ring, acquisitions
had to be done in very close range in order to achieve suffi-
ciently large illumination angles to make the variability of
the holograms visible. Thus, it was necessary to addition-
ally mount a macro and wide-angle lens (Mantona 18672
objective set) to the NEXUS P6 to make the field of view
wide enough.

The coordination of acquisition and illumination was
controlled by a software, i.e., control of focus, exposure
time, switching of illuminating LEDs, and actual acqui-
sition. A single hologram is acquired 24 times, once for
each illuminating LED, whereby the observation position
is held constant. We call the resulting photometric set of
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Fig. 3 LED ring-light module to be mounted to a mobile device

24 RGB images the Photometric Hologram Stack (PHS).
When stacked along the color channel dimension, the
PHS is a 3D array with 3 x 24 = 72 color channels.

3 Compressed hologram representation by deep
learning

Given a PHS of a hologram, the goal is to generate a com-
pressed representation of the variations that allows for
easily comparing different holograms. We will compare
our approach to the so called DOVID descriptor [6] which
extracts properties of the Bidirectional Reflectance Distri-
bution Function (BRDF) for each hologram position out of
(in their case) the 32 available color values for each posi-
tion. The final descriptor was constructed as a histogram
vector of these properties over all hologram positions. The
optimal parameterization of property thresholds, mask-
ing, and histogram bins has to be assessed by trial and
error with the objective that fake holograms distinctly dif-
fer from the corresponding intended genuine hologram
types. That means that a sufficient sample of fakes must be
at hand during training, which is often difficult to achieve.

Fig. 4 lllustration of a cross-section of the cylindrical LED ring
light-dome

(2017) 9:9 Page 3 of 6

Thus, an alternative method of generating reliable holo-
gram representations is required, which

(1) learns hologram types’ target appearances only from
genuine samples,

(2) learns from the PHS directly without much image
pre-processing, and

(3) reflects measurable deviations from genuine
references for newly presented fakes.

Motivated by the great success of deep learning in vari-
ous computer vision tasks over the last years, we employed
deep learning a Convolutional Neural Net (CNN) for this
task. The training objective is to classify PHS stacks of
genuine hologram types (in our case Euro banknote holo-
grams, i.e., EU5, EU20, EU50, EU100, and EU500). We use
the vector output of a high-level layer of the trained CNN
as the new hologram representation vector. Thereby, on
the basis of a vector metric, the representation of a new
hologram is compared with hologram representations of
reference holograms which are known to be genuine.

Due to our very small sample of holograms, we were
forced to make use of transfer learning. Yosinski et al.
[8] showed that CNN features learned in one task can be
transferred to another task. Azizpour et al. [9] presented
a detailed study on relevant factors for transfer learning.
Especially, when there is only a small sample set available
in the second task, a CNN pre-trained on the first task as
initial setting for training the second task showed to be
preferable to random initializing the CNN. This is called
fine-tuning the CNN on the second task. Fine-tuning
meanwhile is commonly used, often by means of CNNs
trained on ImageNet, as these nets have been trained
extensively on very large data sets. Similarly to Wang
et al. [10], we initialized our CNNs with the fully pre-
trained CNN ImageNetVgg-verydeep-16-4096 [11] trained
by the Visual Geometry Group Oxford on the ILSVRC-
2012 data set [12]. This architecture receives 224 x 224 x 3
color images as input. In the convolutional part, those
are processed through five convolutional blocks C1, C2,
C3, C4, and C5 with 2, 2, 3, 3, and 3 convolutional lay-
ers, respectively, followed by 3 fully connected layers FC6,
FC7, and FC8. Each convolutional block is completed by a
max-pooling layer (Fig. 5).

To allow for the input of PHS, which in our case are
image arrays with 72 “color channels, we copied the
first convolutional layer weights 24 times. In the original
setup, FC8 provides a 1000-vector representing probabil-
ity scores of the 1000 object classes in the ImageNet2012
challenge. According to merely 5 hologram types to be
classified in our task, we reduced FC8’s output to a 5-
vector.

As the new hologram representation, the highest-
level CNN representation is used, which is the output
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Photometric Hologram Stack

Cl

MAX Pooling

C2

MAX Pooling

C3

MAX Pooling

C4
MAX Pooling

C5
MAX Pooling

FC6-4096 |

FC7-{4096,1024,256,64,16}

Fig. 5 Adjusted ImageNetVgg-verydeep-16 CNN architecture.
Receives PHS instead of only RGB images and outputs scores for 5
classes instead of 1000. The new hologram representation is taken
from the output of FC7. In 5 alternative architectures, FC7 is adjusted
10 4096, 1024, 256, 64, and 16 dimensions

of FC7. Originally, FC7 is 4096-dimensional, which is
far higher dimensional than the aforementioned model-
based DOVID descriptor which is 150-dimensional in
our experiments. Thus, we conducted experiments with
alternative architectures, where FC7 outputs 4096-, 1024-,
256-, 64-, and 16-dimensional representations. Those five
different architectures shall be referred to as FC7-4096,
FC7-1024, FC7-256, FC7-64, and FC7-16.

4 Sample holograms

By courtesy of the OeNB!, we had an access to samples of
genuine Euro banknotes of the five denominations EU5,
EU20, EU50, EU100, and EU500. Each genuine denom-
ination contains a different type of hologram. For each
of the five types, we acquired ten examples of genuine
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holograms. Additionally, ten examples of genuine but
severely creased EU5 banknotes were available, which can
be used to determine if the developed CNN hologram
representation shows a similar structure for creased and
uncreased holograms. This would be an important evi-
dence of robustness to crease, as crease is a very natural
source of variation of banknotes. While the EU5 sample
only contains genuine holograms, for the other types, a
number of counterfeited holograms were acquired, i.e., 16
examples for EU20, 23 examples for EU50, 14 examples
for EU100, and 9 examples for EU500.

By means of our acquisition setup from Section 2, for
each hologram, 24 RGB images were acquired, one for
each of the ring-light device’s LEDs. Hologram areas were
cutout from the images and sampled so that each image
is filled predominantly by the hologram and that it com-
prises a 224 x 224 pixel raster, which is the spatial input
size for the CNN. Those 24 224 x 224 x 3 images were
stacked along the color channel into the 224 x 224 x 72
dimensional PHS.

5 Experimental results

The five CNN architectures FC7-4096, FC7-1024, FC7-
256, FC7-64, and FC7-16 were setup on a pre-trained
ImageNetVgg-verydeep-16 CNN provided by the Visual
Geometry Group Oxford as described in Section 3 . Each
CNN was fine-tuned for further 30 epochs with the fixed
learning rate « = le — 5 and the objective to clas-
sify genuine Euro holograms of the types EU5, EU20,
EU50, EU100, and EU500 (see Section 4). For each holo-
gram type, seven genuine samples were used for training
and three for validation. Additionally, data augmentation
was applied, where each training sample was augmented
by two randomly shifted (< 15 pxl) and two randomly
rotated (< 8°) versions in each epoch. Well before epoch
30, each of the CNNs could classify genuine holograms
perfectly.

After fine-tuning, each hologram PHS was processed
through each of the CNNs and the corresponding holo-
gram representation vectors received from the FC7 layers.
In parallel, for each hologram, the histogram-based, mod-
eled DOVID descriptor was generated. Required parame-
ters were set by trial and error search using also the fakes
with the objective that fake representations should dis-
tinctly differ from genuine ones. The final solution led to
a 150-dimensional histogram representation to which we
refer as Hist-150.

Thus, for a fixed representation type R € {FC7-4096,
..., FC7-16, Hist-150} of dimension m € {4096, 1024, 256,
64, 16, 150} and a hologram type H € {EU5, EU20, EU50,
EU100, EU500}, let

GR ={geR™), FR={fiecR") (1)
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be the sets of representations of the genuine holograms
Gﬁ and faked holograms Ffl. Note, FEUS contains the set
of indeed genuine, but severely creased, EU5 banknotes
and no fakes.

In order to mutually compare hologram representa-
tions, we use the cosine distance as measure of dissimilar-
ity of any two hologram representation vectors p € R™
and g € R™:

@ q)

T ()

deos(,q) =1 — .
lpll2 - ligll2

For a hologram fake to be detectable as counterfeit,
its nearest neighbor distance to the cluster of genuine
hologram representations of the corresponding hologram
type must be significantly larger than the maximal intra-
cluster distance of mutual distances between the genuine
holograms, i.e.,

Vf € Ef imin{deos(f)Igi € G} >

3)
max {dcos (gl:g/) |gi!gj € Glfe[’i 7&]} .

In this manner, we define a fake separation factor sﬁ,
which indicates how well all available fake holograms
are distinguishable from the genuine holograms of the
hologram type intended to be faked, i.e.,

& Tmax {dcos(girg)\gin g5 € GRi # ) W
" min {dcos(fi,gj)[fi € FR,gj c Gﬁ}

In sﬁ, the maximum intra-genuine-cluster distance is
set in relation to the minimum fake-to-genuine-cluster
distance. If all the fakes f € FII_QI are well distinguish-
able from the corresponding genuine holograms in GX,
then sﬁ, < 1. If 51;1 > 1, then at least one f € Ff, at
least touches the genuine hologram cluster G% indicating
that FX cannot reliably be distinguished from the genuine
holograms.

In Table 1, the fake separation factors Sfl are listed for
all hologram types and representation types. For CNN
representations, results show the following:

Table 1 Fake separation factor 5@ for all hologram types and all
types of hologram representation vectors

Type EUS EU20 EU50 EU100 EU500
FC7-4096 1.33 0.3 0.24 0.29 0.1
FC7-1024 1.38 0.22 0.2 0.23 0.1
FC7-256 1.01 0.22 0.16 0.13 0.07
FC7-64 2.01 033 0.08 0.06 0.06
FC7-16 3.2 0.18 0.03 0.06 0.06
Hist-150 0.84 0.09 1.04 0.18 0.24

Note for EU5 no fakes are available, here we measured the separation between flat
and creased genuine holograms
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e That fakes are reliably distinguishable from genuine
holograms (st ~* « 1 for
H e {EU20, EU50, EU100, EU500}),
e Robustness to crease (522757* > 1 shows that creased
and uncreased holograms are indistinguishable)?, and
e High compression rate (representations are robust

even for m = 16).

The DOVID descriptor on the other hand does not have
that robustness to crease as szllifgwo = 0.84 < 1 indicates
a gap between creased and uncreased hologram clusters.
sgﬁg’&so = 1.04 > 1 further shows, that also fake detection
could not be accomplished reliably.

6 Conclusion

We presented a mobile setup for photometric hologram
acquisition by means of an especially constructed portable
ring-light module mountable to a mobile device. In order
to evaluate the obtained photometric hologram image
stacks, we developed a new hologram representation
for capturing and compressing the essential appearance
properties of holograms with methods of deep learn-
ing. We compared its capability of fake detection on
Euro banknote holograms with that of an already exist-
ing histogram-based photometric hologram descriptor.
While our new learned representation can be easily com-
puted only by the use of a genuine hologram sample, the
already existing descriptor can only be parameterized by
using a sample of fakes as well. Nevertheless, our holo-
gram representation is more robust to natural hologram
appearance variations and could more reliably detect fake
holograms, despite those which have never been used in
the training stage.

Endnotes
! National Bank of Austria (OeNB), Test Center, Vienna
2In a more detailed cluster analysis, we also verified that
the CNN representations of the creased EU5 holograms
are actually embedded in the cluster of genuine uncreased
EUS representations.
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