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Abstract

The precise tracking of an abnormality in the gastrointestinal tract is useful for medical training purposes. However, the
gastrointestinal wall deforms continuously in an unpredictable manner, while abnormalities lack distinctive features,
making them difficult to track over continuous frames. To address this problem, we propose a tracking method for
capsule endoscopy using the surrounding features of abnormalities. By applying triangular constraints using an affine
transformation, we are able to track abnormalities that do not have distinctive features over consecutive image
frames. We demonstrate the efficacy of our approach using eight common types of gastrointestinal abnormalities.
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1 Introduction
Medical endoscopes are widely used in procedures for
inspecting the inner cavities of the human body. In gas-
trointestinal (GI) surgery, endoscopy is often favored over
laparotomy because it is less stressful for the patient and is
less labor-intensive for the surgeon. GI mapping that iden-
tifies the position of an abnormal region, once performed
manually, is now being carried out using medical imaging.
In this process, a three-dimensional map is constructed
from a sequence of two-dimensional endoscopy images
captured during GI treatment. Feature tracking and image
analysis in GI mapping have been the subject of a large
body of research [1–3].
Wireless capsule endoscopy (WCE), which has been in

use since 2002, employs a device that is swallowed and
propelled by peristalsis through the GI tract. The cap-
sule captures images at a low frame rate during its 7–8-h
passage through the GI tract. A WCE diagnosis requires
doctors to have skills different from those required for
conventional endoscopy. Abnormalities in WCE images
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do not have clear edges or present with appreciable con-
trast to the background tissue, as seen in the examples in
Fig. 1. There has thus been much research centered on
assisting WCE diagnosis in recent years [4–8]. Further-
more, a training system is needed to assist medical doctors
to identify abnormal regions in WCE images.
When a medical doctor unskilled in WCE identifies an

abnormality on an image in a training system, ground
truth data, which include the period between the abnor-
mality’s appearance and disappearance, as well as the
abnormality’s type and location, are needed to decide
whether the identification is correct. Currently, medical
doctors manually annotate each frame. However, as an
abnormality can appear in any number of frames, rang-
ing from only a few to several hundred, this is a time-
consuming task. There is clearly a need to be able to
automatically track the abnormality.
The present study focuses on abnormality tracking in a

sequence of WCE images. Clearly, as the shape of the GI
tract is deformed by peristaltic motion, the shape of the
abnormality changes in these images (Figs. 2 and 3). The
boundaries of abnormal regions, such as bleeding sites
and tumors (Fig. 1), are difficult to distinguish using stan-
dard image feature detectors. Moreover, the position of
such extractable features is unstable even if the change
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Fig. 1 Samples ofGI abnormalitieswithin the small intestine. a Red spot. b Phlebectasia. c Angiodysplasia.d Lymphangiectasia. e Erosion. f Erythematous.
g Ulcer. hWhite-tipped villi. Green circles in each image identify the abnormal regions

between consecutive images is small. The main cause of
failure in algorithmic GI abnormality tracking is the lack
of distinguishable features in an abnormality target region.
Nontrivial image changes, related to the low frame rate

of the video capture, also occur duringWCE. Motion pre-
diction approaches, such as the use of the Kalman filter
[9, 10] and particle filter [11], cannot be used because
image changes caused by peristaltic motion appear to
be random. Recently, methods of tracking based on con-
volutional neural networks (CNNs) have been proposed
[12, 13]; CNN methods have produced excellent results
[14] but require a lot of data for training.
In our proposed method, we use features of the abnor-

mality, as well as surroundings features, or supporters.
Generally, supporters and the target are inherently diffi-
cult to track using their ambiguous image features alone.
We thus employ three mutual supporters with a triangular
constraint, which preserves a triangular shape but allows
weak deformation between consecutive frames. We found
that the position of the target could be reliably determined
using the transient position over successive frames, on the
basis of the affine transformation of several supporters.
Kanazawa and Uemura [15] proposed a method for

matching weak features between two affine invariant
images, using a triplet vector descriptor; however, their
method does not support images that have local changes.
To address this limitation, we placed constraints on each
matching supporter but not on the image as a whole,
allowing the matching of deformable objects. Grabner
et al. [16] developed a method of tracking invisible tar-
gets using the surrounding features, such as the large

eigenvalues of a Hessian matrix. The method typically
requires that the target has strong image features. Here,
we propose a tracking procedure for abnormalities using
a triangular constraint depending on the angle method
based on the surrounding features [17]. This procedure
is designed for tracking deformable and weak-featured
objects. However, it is not enough to simply match pairs
using this procedure, because angular constraints result in
a high flexibility of matching pairs.We thus focused on the
wall of the GI tract, using local affine constraints to track
an abnormality, on the basis of its surrounding features.

2 Method
2.1 Overview
We assume that a medical doctor or clinical technician
identifies the initial location of an abnormal region within
an image through manual analysis. Starting from a given
frame, our method can track the abnormal region, for-
wards and backwards, to determine its appearance period.
Our method involves three stages, outlined below.
First, feature points in the target (abnormal region)

and in the surrounding features (supporters) between
successive images are matched. Usually, supporters
cannot be accurately tracked individually, because an
image sequence from a capsule video does not have
clear features. For this reason, a triangular constraint
is used, which follows the relative positions across
consecutive frames.
Second, the target position is roughly estimated using

a voting process based on an affine matrix that is calcu-
lated from triplet supporters. The relative position of the

Fig. 2 a–d Example of four continuous frames in a capsule endoscopy image sequence
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Fig. 3 a–d Example of four continuous frames in a capsule endoscopy image sequence

target is adjusted using amapping between triangles of the
current and subsequent frames.
Finally, a precise position is estimated using features

inherent to the abnormality. This involves correcting
for errors introduced during the coarse estimation in
the previous step, usually caused by deformation-based
movement of the scene. For this process, we use color
information from the target, rather than traditional
anchor points, as this is more reliable when there are sev-
eral independent moving regions. We derive the theory
behind these three stages below.

2.2 Matching supporters
In the first stage, supporter pair sets Pt are created
between consecutive frames t and t − 1. In each frame, the
supporters are extracted using the Kanade-Lucas-Tomasi
(KLT) method [18]. In the proposed method, the KLT
method is used only for point detection and not for point
matching. Our proposed method does not depend on this
point detection method if enough points are detected in
continuous frames. Two other point detection methods
were also evaluated: the scale-invariant feature transform
(SIFT)[19] and speeded-up robust features (SURF)[20]
methods. The target region in the small intestine, used as
a test case here, does not have a defining texture; hence,
SURF and SIFT, both being local to region-based feature
descriptors, did not fare well. The KLT method, how-
ever, is normally defined by 3×3 pixels and is sensitive to
changes in color intensity. The KLT method was found to
be more stable and accurate for matching points of the
bowel wall.
A supporter pair set Pt is given by

Pt =
{
pt(i,l) | i ∈ Nt

p, l ∈ Nt−1
p

}
, (1)

where Nt
p and Nt−1

p are the numbers of supporters in
frames t and t − 1. The support pairs

pt(i,l) =
(
Fti ,F

t−1
l

)
, (2)

have the elements

Fti = (
xti , f ti

)
, (3)

f ti = {
hti1,h

t
i2, · · · ,htiH

}
, (4)

where Pt has Nt
p × Nt−1

p supporter pairs that are a com-
bination of all detected points for frames t and t − 1,
the supporter Fti is the ith point in frame t, xti is the
coordinate of point i in frame t, and f ti is the image fea-
ture, denoted by components of the GI color histogram
(Eq. 4) [21] around KLT feature points. We found that
the GI color space was an efficient means of describing
color features in a sequence of WCE images. The GI color
histogram was proposed to better distinguish suspicious
regions from normal regions without overly enhancing the
image. The GI color histogram is constructed employing
principal component analysis from a large dataset of cap-
sule endoscopy sequences that covers a variety of patient
data. The GI color histogram uses the third component.H
is the number of partitions in the histogram. hti a denotes
the value of the ath partition in the histogram. f ti is the
normalized histogram. Each frame is divided into four
areas, and the supporters are detected in each area. The
same number of supporters is detected in each area and
this number is set in advance. A supporter pair pt

(i,l) in the
supporter pair set Pt is matched according to its match-
ing score Bcf(pt(i,l)) and its weighting Mw(pt

(i,l)) from the
triangular constraint. The score Bcf(pt(i,l)) denotes the
Bhattacharyya distance between features f ti and f t−1

l and
is given by

Bcf
(
pt(i,l)

)
=

H∑
a=1

√
htiah

t−1
l a. (5)

Additionally, the matching score flag is defined by

Jf
(
pt(i,l)

)
=

{
1, i f Bcf

(
pt

(i,l)

)
≥ ThB,

0, else,
(6)

The WCE images capture localized movements in dif-
ferent regions between successive frames. We use a tri-
angular constraint weightMw(pt

(i,l)) to match supporters,
which maintains a triangular shape between successive
frames. In this way, we can assume that successive images
represent a rigid state.
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We now need to define the scoring algorithm for sup-
porter pair pt

(i,l), stored in the supporter pair sets Pt . The
triangular constraint weight of a supporter pair pt

(i,l) is

Mw
(
pt(i,l)

)

= Jf
(
pt(i,l)

) ∑
j
∑

m
∑

k
∑

n Jf
(
pt(j,m)

)
Jf

(
pt

(k,n)

)
DM

(
pt

(i,l) ,p
t
(j,m) ,p

t
(k,n)

)

∑
j
∑

m
∑

k
∑

n Jf
(
pt(j,m)

)
Jf

(
pt

(k,n)

) ,

(7)

j = [1, 2, · · · ,Nt
p − 1, j �= i] , (8)

k = [j + 1, j + 2, · · · ,Nt
p, k �= i] , (9)

m = [1, 2, · · · ,Nt−1
p − 1, m �= l] , (10)

n = [m + 1,m + 2, · · · ,Nt−1
p , n �= l] , (11)

where
DM

(
pt
(i,l) ,p

t
(j,m) ,p

t
(k,n)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

if either the triplet supporters
(
Fti ,F

t
j ,F

t
j
)
or

(
Ft−1
l ,Ft−1

m ,Ft−1
n

)
is collinear.

1,

if all parameters of the affine matrixAt
(i,l),(j,m),(k,n)

are within acceptable value.

0, else

pt(j,m) =
(
Ftj ,Ft−1

m

)
, (12)

pt(k,n) = (
Ftk ,F

t−1
n

)
. (13)

The supporter pairs pt
(i,l),p

t
(j,m),p

t
(k,n)

are used to com-
pute an affine matrix:

At
(i,l),(j,m),(k,n) =

[
a11 a12 a13
a21 a22 a23

]

= AScale ∗ ARotation ∗ AShear ∗ ATranslation,
(14)

where

AScale =
[
Sx 0 0
0 Sy 0

]
, (15)

ARotation =
[
cos θ − sin θ 0
sin θ cos θ 0

]
, (16)

AShear =
[

1 tanαy 0
tanαx 1 0

]
, (17)

ATranslation =
[
1 0 tx
0 1 ty

]
. (18)

The elements a13 and a23 are defined by the transla-
tion parameters (tx, ty), and the remaining elements a11,
a12, a21, and a22 are the result of rotation through angle
θ , scaling by (Sx, Sy), and shearing at angles (αx,αy). The
affine matrix At

(i,l),(j,m),(k,n)
is defined by a rotational angle

θ , scale changes (Sx, Sy), shearing angles (αx,αy), and
translational parameters (tx, ty), as shown in Eqs. 14–18.

The acceptable limits for these parameter values in our
application are

• −20◦ < rotational angle θ < 20◦
• −10◦ < shearing angle < 10◦
• 0.25 < scale change < 3.0
• Maximum translational range, 1/2 image size

These parameters were empirically determined in our
study since a11, a12, a21, and a22 cannot be decomposed
into θ , (Sx, Sy), (αx and αy). Whether these values of a11,
a12, a21, and a22 are within possible ranges is calculated
in advance. The angular constraint that was used in our
previous work [17] is only a limit of the shearing angle
and scale change.

Our method for selecting which supporter pairs are
stored in selected supporter pair sets Gt is as follows.
This involves three steps.
Step 1: Calculate the score Zct

(i,l) for all supporter pairs
pt

(i,l) in set Pt ,

Zct(i.l) = Mw
(
pt(i,l)

)
Bcf

(
pt(i,l)

)
(19)

Step 2: The supporter pair pt
(i,l) having the highest score

Zct
(i,l) in set Pt is selected and stored in selected supporter

pair set Gt .
Step 3: Supporter pairs that include points i and l are

rejected from the set Pt .
Return to step 2.
This process is repeated until all supporter pairs are

rejected. The selected supporter pair set Gt is a subset of
supporter pair set Pt :

Gt ⊂ Pt (20)

Gt =
{
pts | s ∈ Nt

g

}
. (21)

Nt
g is then the number of selected supporter pairs.

Figure 4 shows the point matching results obtained
without a constraint and using an angular constraint [17]
and our proposed method. Blue points represent detected
points while red lines match saturation scores (where a
high saturation corresponds to a high score).

2.3 Coarse approximation of an abnormal region
In this stage, we produce a rough estimate of the abnor-
mality’s position. After creating supporter pairs between
successive frames, a voting map is created. Abnormali-
ties are located on the voting map using an affine matrix
that is calculated from each matching supporter triplet.
Conventionally, a one-to-one relationship is used in the
voting process for the target position, depending on the
parallel shift of the camera (Fig. 4a). This process cannot,
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Fig. 4 Point matching results using a no constraint (the conventional method), b an angular constraint [17], and c an affine constraint (the
proposed method)

however, cope with any rotational movement of the cam-
era (Fig. 4b, c). To overcome this limitation, our method
uses relationships between the triplets of supporters and
the abnormality’s position, when voting for the target
position. Figure 5 shows the voting results for the conven-
tional and proposed methods. The red rectangle gives the
actual abnormal region, while the green rectangle gives
the abnormal region estimated using the conventional
method and the blue rectangles give the abnormal regions
estimated using our proposed method. It is clear that our
approach performs better than the conventional method.
Our approximation of position, based on a voting map, is
outlined in detail below.
The score of each (x, y) position on the voting map is

given by

C(x, y) =
Nt
g∑

u>t

Nt
g−1∑
t>s

Nt
g−2∑
s=1

f(x, y)Bcf
(
pts

)
Bcf

(
ptt

)
Bcf

(
ptu

)
,

(22)

where

f(x, y) = 1
2πσxσy

exp
(

−1
2

(
(x − μx)2

σ 2
x

+ (y − μy)2

σ 2
y

))

(23)

is the weight of the distance to the estimated position of
the abnormality, produced using the affine matrix At

s,t,u.
The tracking area is defined as a rectangle with sides par-
allel to the x axis and y axis. (σx, σy) denotes the lengths
of the sides of the rectangle. The voting scores C(x, y) are
calculated by multiplying the three matching scores Bcf(·)
and the weighting function f(x, y), which is defined by the
distance from the abnormality’s position, estimated from
the triplet supporter pairs that are stored in the selected
supporter pair set Gt .
The estimated position of the abnormality in the current

frame, (μx,μy), is computed using the affine transfor-
mation of the previous abnormality’s position (tx, ty), i.e.,

⎡
⎣

μx
μy
1

⎤
⎦ = As,t,u

⎡
⎣
tx
ty
1

⎤
⎦ . (24)

Fig. 5Movement between successive frames caused by a a parallel shift and b, c rotational movements of the camera. The red rectangles identify
abnormal regions. The green rectangles show the attempt to track these abnormalities by assuming only a parallel shift (the conventional method)
whereas the blue rectangles show the attempt to track these abnormalities using affine voting (the proposed method)
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2.4 Determining a precise position
We now explain how we track an abnormal region. The
voting procedure can result in an error in the position of
the abnormal region, because of continuous deformation
of the scene. Hence, we now use color information of the
target, which is more reliable in situations that the target
is deformable. In the initial frame, an abnormal region is
described using the GI color space, which was developed
to distinguish abnormal regions within the intestine [21].
We found the third GI color component to be the most
useful for this purpose.
Next, a score is calculated for all positions having a

voting score greater than the threshold:

V(x, y) = C(x, y)B(Abinitial, F),

V(x, y) = C(x, y)Bca
(
Qinitial ,K (x,y)

)
(25)

Bca
(
Qinitial ,K (x,y)

) =
H∑
a=1

√
qti ak

t−1
l a, (26)

where (x, y) is the position, C(x, y) is the voting
score calculated from the coarse estimation, and
Bca(Qinitial ,K (x,y)) is the Bhattacharyya distance between
a GI color normalized histogram of the target in the
initial frame (Qinitial) and that around position (x, y) in

the current frame (K (x,y)). The position having the max-
imum score is designated as the target. If the maximum
Bca(Qinitial ,K (x,y)) is lower than the threshold and the
voting score in the image area is less than or equal to the
threshold, then the current frame does not include the
target.

3 Results
We processed 120 sequences, chosen randomly, in which
eight major types of abnormalities were present: a red
spot, phlebectasia, angiodysplasia, lymphangiectasia, ero-
sion, erythematous, ulcer, and white-tipped villi (see
Fig. 1). The image size was 256 × 256 pixels and images
were recorded at 2 fps. The ground truth of the abnormal
position and size were demarcated manually. If the size
of the abnormality was smaller than 30 pixels, then the
size was set to 30 pixels. Figure 6 shows the precision and
success plots per sequence obtained using the proposed
method, i.e., changing each limited parameter of the affine
matrix in the stage of matching supporters.
The tracking error in frame t, denoted Et , is defined as

Et =
√

(xet − xat )2 + (yet − yat )2, (27)

where (xet , yet ) denotes the central position of estimated
tracking area in frame t and (xat , yat ) denotes the central
position of the ground truth of the abnormal area in frame

Fig. 6 Precision and success plots per sequence. Here, the performance of the proposed method is investigated by changing parameters
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Fig. 7 Precision and success plots per sequence. Here, the performance of the proposed method is compared with that of the conventional
method and angular-constraint method

t. It was found that the proposed method is insensitive to
parameter changes. We see that parameter set 4 provides
better results than other parameter sets. The parameters
were defined in the method section.
Figure 7 shows precision and success plots per sequence

when using the proposed method and the angular con-
straint [17] and no constraint (i.e., conventional method).

We see that our proposed method performs better than
the other methods and is able to track an abnormality,
with an error of less than 30 pixels, for more than 90% of
the sequence.
Figure 8 compares the proposed method with both

the mean-shifted method [22] and the multi-domain net-
work (MDNet) [12] method that won the Visual Tracking

Fig. 8 Precision and success plots per sequence. Here, the performance of the proposed method is compared with that of the mean-shifted
method [22] and that of the MDNet method [12] trained using VOT2015 data or capsule endoscopy images



Yanagawa et al. IPSJ Transactions on Computer Vision and Applications  (2017) 9:3 Page 8 of 10

Fig. 9 Precision and success plots per frame, comparing the tracking of our proposed method with that of other state-of-the-art methods

Challenge in 2015 (VOT2015) [14]. The MDNet method
requires pre-training of its model before tracking can
be accomplished. We therefore prepared two training
models. For MDNet_VOT, we use the model that Nam
et al. are publishing (https://github.com/HyeonseobNam/
MDNet). The model of MDNet_capsule additionally
trained the model of MDNet_VOT using about 1000
WCE images.
Our proposed method performed better than both the

mean-shifted method and the MDNet method using a
VOT2015 training model.
Figure 9 presents the precision and success plots per

frame. It clearly illustrates that our proposed method,

denoted using the affine constraint, outperforms all other
state-of-the-art methods.
Figure 10 demonstrates our ability to track an abnor-

mality, even when there are large movements in the
background scene, and when the appearance of the abnor-
mality is difficult to detect with the naked eye. The green
rectangle denotes the ground truth region, while the yel-
low rectangle is our tracking result. Despite irregular
movements during the capture of these sequences, the
proposed method successfully tracked the abnormality.
Figure 11 provides examples of erroneous tracking.

The first row shows a case without a good coarse
estimation, and with many similar textures. Thus, in the

Fig. 10 Examples of the accurate tracking of abnormalities using the affine constraint. The green rectangles in each image are the ground truth
region, while the yellow rectangles are our tracking result

https://github.com/HyeonseobNam/MDNet
https://github.com/HyeonseobNam/MDNet
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Fig. 11 Examples of erroneous tracking using the affine constraint. Green rectangles in each image are the ground truth region, while the yellow
rectangles show our tracking result

supporter matching step, many incorrect pairs were cre-
ated. Because the supporter is detected only in the center,
the second-row case is an example where the estimation
is shifted because the entire image cannot be used. Failure
to track the abnormality in first-row cases occurs during
determination of the precise position from color informa-
tion (stage 3) while that in second-row cases occurs during
the detection of the supporter.
In a training system, frames in which the abnormality

appears and disappears are important. We performed an
experiment in which an initial frame, located somewhere
within the sequence of images showing an abnormality, is
selected manually. Next, the manual tracker searches back
and forth to determine the frames in which the abnor-
mality is resolved. Table 1 gives the results of experiments
related to detecting the disappearance of the abnormal-
ity. “Lost” denotes the case when the abnormality is lost
by the tracker, even though it still situated within the
video frame. Although the affine-constraint method per-
forms better than other methods, its performance is not
satisfactory for training purposes.

4 Conclusions
We proposed a method for tracking areas with abnor-
malities in an image sequence from capsule endoscopy.

Table 1 Performance comparison of our affine-constraint
method with angular-constrained and unconstrained tracking
methods

Affine Angular No
constraint constraint constraint

Correct 114 104 103

Lost 6 16 17

It is not unusual that abnormality images in the small
intestine do not have strong features, such as sharp edges
and distinct color changes. Consequently, the surround-
ing features are used to estimate the position. The position
of the target can be robustly determined from voting
relative positions according to an affine transformation
of several triplets of supporters. The affine constraint
is also effective as shown in the experimental results,
which means that the triangular shape is maintained,
while still allowing weak deformation between succes-
sive frames. In conclusion, the proposed method is able
to track an abnormality even if motion displacement is
large and the abnormality is indistinguishable. The cal-
culation time was approximately 5 s per frame using
a general-purpose personal computer. This calculation
time is the same as that for the MDNet method but is
later than that of the mean-shifted method. However, we
believe that the calculation can be accelerated bymultiple-
core processing.
At present, WCE captures images at rates of 2–6 fps,

and it is possible to adjust the frame rate with respect to
the capsule’s speed. Although in our experiments we used
images captured at 2 fps, our tracking procedure should
also function at 6 fps. Furthermore, our method can
easily accommodate variable frame rates, with changing
constraints.
We showed that our proposed method is able to track

an abnormality, even when motion displacement is large,
and its appearance is difficult to detect with the naked eye.
As future work, we intend representing color components
of both the abnormal area and the adjacent area using a
Gaussian mixture model in the fine estimation, to deter-
mine the disappearance frame corresponding to the end
of the existence of the abnormality.
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