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Abstract

Common light sources such as an ordinary flashlight with lenses and/or reflectors make complex 4-D light field that
cannot be represented by conventional isotropic distribution model nor point light source model. This paper
describes a new approach to estimate 4-D light field using an illuminated diffuser. Unlike conventional works that
capture a 4-D light field directly, our method decomposes observed intensities on the diffuser into intensities of 4-D
light rays based on inverse rendering technique with prior knowledge. We formulate 4-D light field reconstruction
problem as a non-smooth convex optimization problem for mathematically finding the global minimum.
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1 Introduction

Estimation of lighting environment is important for many
applications in photometric methods in computer vision,
e.g., photorealistic image synthesis, photometric stereo,
and BRDF estimation. For representing a radiant inten-
sity distribution of light sources, various models have been
proposed and they can be categorized into four groups as
shown in Fig. 1.

As a simplest model of a radiant intensity distribu-
tion for a light source, an isotropic point light source has
conventionally been used (Fig. 1a). This type of model
has only one intensity parameter. Due to its simplicity,
this model established a standard in the field of pho-
tometric computer vision [1, 2]. This simplest model is
extended to two directions for representing the direc-
tivity and the spatial distribution of light sources. For
the directivity, an angular radiance distribution is con-
sidered (Fig. 1b) by assigning different intensity param-
eters for different directions. This model can handle an
anisotropic point light source, and is essential for mod-
eling a light with hard directivity like an LED [3]. The
other extension is for the spatial distribution for repre-
senting the volume of lighting environment (Fig. 1c). By
simply arranging multiple isotropic point-light-sources in
a space, the model can handle the spatial distribution of
lights. Although these extensions increase the accuracy
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of lighting environment modeling, they cannot be used
to model an actual complex light field, e.g., generated
by LEDs or bulbs with reflectors and/or lenses. Differ-
ences between illuminating effects of actual lights and
modeled ones by (a), (b), (c), become bigger when lights
are placed near from the objects, and it prevents photo
realistic rendering and high accurate inverse rendering
in this situation. 4-D light field (Fig. 1d), which presents
light field by 2-D directivity x 2-D spatial distribution
of light sources, is essential for modeling actual lighting
environments.

In this study, we focus on reconstructing 4-D light field
from images on an illuminated object. In order to esti-
mate 4-D light field, most of conventional works directly
capture a huge number of images for all the directions
from all 3-D positions and resultantly, they suffer from
the cost problem for measuring all rays. Instead of direct
capturing, our method estimates unknown parameters
of the 4-D light field so that the images rendered with
reconstructed lighting would become as similar as pos-
sible with captured original images based on an inverse
lighting techniques [4]. To achieve the goal of both accu-
rate and robust estimation, we have developed a new
inverse lighting method based on a convex optimization
technique. Our method introduces the range of possible
radiant intensities from a physical constraint and it actu-
alizes the reconstruction of the 4-D light field from a few
images.
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Fig. 1 Categorization of light field models. a Isotropic point light source. b Anisotropic point light source. € Set of point light sources. d 4-D light field

Remainder of this paper is organized as follows.
Section 2 discusses related work and highlights our con-
tributions. Section 3 expresses a basic idea for 4-D
light field reconstruction. Section 4 describes an effi-
cient solution for non-smooth convex optimization prob-
lem. Section 5 shows experimental results in real scenes.
Finally, Section 6 concludes the present study.

2 Related work and contributions

2.1 Direct method for 4-D light field acquisition

Direct methods directly capture the 4-D light field by
back-tracing the rays from the camera. Measured 4-D
light field is represented by a form of 4-D light ray space
based on a set of 2-D images of a scene captured from
different view points.

As straight-forward methods for measuring the 4-D
light field, some methods that capture 2-D images for
all directions from all the 3-D positions using camera
mounted on a robot arm have been used [5-8]. These
methods are generally expensive in both measuring cost
and time. In order to reduce them, Unger et al. [9, 10]
used an array of mirrored spheres and a moving mirrored
sphere that travels across the plane. Goesele et al. [11] and
Nakamura et al. [12] used various kinds of optical filters
that spatially limit the incident light rays to the camera.
Cossairt et al. [13] used a lens array and created aug-
mented scenes relighting synthetic objects using captured
light field. Although these methods are related to our
problem, the direct methods still require a comparatively
large amount of images.

2.2 Indirect method for light field reconstruction

Indirect methods, also known as inverse lighting, recon-
struct the lighting parameters in a scene by minimizing
the difference of observed and computed intensities that

can be simulated using CG rendering techniques with
known scene geometry, surface property, and lighting
environment.

Conventionally, many researches utilized a specular
reflection or diffuse reflection components to estimate
a lighting environment [14, 15]. These approaches solve
a linear system. Ramamoorthi and Hanrahan [16] have
shown the reason that inverse lighting problem for global
illumination is ill-posed or numerically ill-conditioned,
based on the theoretical analysis in the frequency domain
using spherical harmonics. On the other hand, Park
et al. [3] estimate the 2-D light field emitted from a point
light source, which rigidly attached to a camera, using a
illuminated plane.

Shadows are areas where direct lights from a light
source cannot reach due to the occlusion by other object
and thus can provide useful information for estimating
the lighting environment. By using the cast shadow infor-
mation, Sato et al. [17] proposed a method to recover
positions of a set of point light sources. Okabe et al. [18]
used a Haar wavelet basis to approximate the lighting
effect by a small number of basis functions. Takai et al. [4]
proposed a skeleton cube as a reference object that creates
a self cast shadows from a point light source of arbitrary
position.

2.3 Our contributions

As described above, the direct method suffers from the
cost problem for data capturing and there is no method
that can estimate 4-D light field with the indirect method,
as far as we know. In this paper, we propose a method for
estimating 4-D light field in an indirect manner that can
estimate light field from a few images. In order to achieve
this, the problem of estimating 4-D light field is formed
as energy minimization problem with several constraints
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and the problem is solved by convex optimization. It
should be noted that this paper is an extension of our con-
ference paper [19]. In this paper, for stable and accurate
estimation, we have newly introduced physical constraint
with £1-norm regularization for energy function and we
have also conducted completely new experiments with
new solution.

3 Basicidea for 4-D light field reconstruction
In this section, we first formulate the problem of basic 4-D
light field reconstruction as a linear system.

Figure 2 illustrates the conceptual setup for our
approach. The light rays, which are emitted from light
sources, are passing through the light field plane L,
on which the 4-D light field is defined. The emitted
light rays are hitting to the diffuser . The camera
observes the integral of light ray intensities on the illumi-
nated diffuser. In this situation, our method reconstructs
the 4-D light field by decomposing observed intensi-
ties into light ray intensities using multiple images in
which the diffuser is illuminated from various direc-
tions, while camera position and diffuser position are
fixed.

For reconstructing 4-D light field, we make the following
assumptions:

¢ The relative positions and postures of a camera, a
diffuser and light sources are known.

The radiance distribution of light sources is static.
The sensor response is linear.

The light is not attenuated by scattering or absorption
The diffuser’s property (transmission model) is given.

In the followings, we first review the relationship
between 4-D light field and observed intensities, and then
discuss how to model the inverse problem of estimating
4-D light field from observed intensities.
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3.1 Relationship between light field and observed
intensities

In this work, we model a 4-D light field as the intensities of
rays defined by the parameters of position (i, v) and direc-
tion (¢, 0) on the light field plane £ as illustrated in Fig. 3.
The center of hemispheres in this figure show sampled
positions (¢, v) on the light field plane £ and the arrows
inside the hemisphere indicate directions (¢,0) of rays.
The observed intensity o; in the local region x; on the dif-
fuser B is proportional to the integral of all the intensities
of rays that are hitting to x; as follows !:

0i = a [ a;(j)s()dj,

j = wv,¢,0)7, (1)
where
o~ _ |} o, ifrayjhitsx;,
4i(j) = { 0, otherwise. 2)

o is a constant value that decides a relative scale of an
observed intensity and a light ray intensity. s(j) is an inten-
sity of ray j and p is attenuation ratio on 3 2. Suppose that
we observe N intensities 0 = {01, - ,on} € RV at differ-
ent regions {x1,- - - ,an} on the diffuser 3, and the ray j is
discretized by (u,v,¢,60)T into M of bundled rays whose
intensities are redefined as s = {s1,- - - ,sm} € R,

sj :/ / s()dodpdudyv, (3)
u,vel; J ¢,0ed;

where /; is a local region on light field plane £ and d;
is a set of directions that pass through the local region
[; on hemisphere. The relationship between the observed
intensities 0 and the radiant intensities s can be formed as
a linear system as

o =As, (4)

where, A : RM — RN is a matrix of known parameters
that represents a rendering process. Equation (4) can be

(

Light Source

Fig. 2 Light rays that hit a diffuser

Diffuser B8

Camera
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Fig. 3 lllustration of light field parametrization on £

solved by linear least squares in principle if we have
sufficient observations.

3.2 Size reduction using spherical harmonics function
In practice, the size of A in Eq. (4) is too large to be solved
due to the large number of unknown parameters.

In order to reduce the number of unknown param-
eters, in this research, we approximate s by the real-
spherial harmonics function that is often employed in
photometric reconstruction. More specifically, the radi-
ant intensity s; in Eq. (3) of the ray passing through
the local region [; on light field plane £ in the direc-
tion d;, is approximated by an weighted sum of the
bases of the real-spherical harmonics function, which is
represented as

F +g

Si=) Y Cifeld0)yrg (5)
f=0f=—¢

where yy, is the basis of real-spherical harmonics, and
cifgare H = (F+ 1)? unknown parameters. Representable
distribution of radiant intensities depends on H.

In the case we discretize the light field plane £ into
L regions, we have H = H x L unknown parameters:
c={c, - ,cpyl € R for modeling 4-D light field. The
relationship between s and ¢ can be expressed as:

s=Yc, (6)

where Y :R7 > RM is the matrix that satisfies an
orthonormal basis property. By substituting, Eq. (6) to
Eq. (4), the following equations are derived.

o = AYg,

o %
b e YU@OR@)
W = TDux)?

where b;; is an element of matrix B € R > RN, R(w) is
a transmission distribution function that is determined by
diffuser’s property, w is determined by the angle between
a normal of the diffuser and the ray, and D(-) represents
the distance between (u, v) and x; on the diffuser 5.

4 Efficient solution under insufficient
observations

The solution of the linear equation given in Eq. (7) is sensi-
tive to observation noises and errors in pose estimation of
the diffuser and often outputs negative intensities due to
the lack of valid observations, as shown in the latter exper-
iment. Possible approaches to overcome this problem are
gaining more observations or introducing constraints on
the parameters.

In this work, in order to achieve stable estimation from
a limited number of inputs, we introduce a physical con-
straint and ¢; -norm regularization into a light field recon-
struction algorithm formulated as a convex optimization
problem. In the following, we first give the formulation
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of the problem, and then describe the details of each
constraint.

4.1 Formulation of light field reconstruction problem
We formulate the problem of light field reconstruction as
follows:

argmcin{llo—Bc||§+A||c||1 + o)}, (8)

where the first term represents the squared error between
observed intensities and rendered intensities, and the sec-
ond term represents the £;-norm of spherical harmonics
coefficients and the X is a weight parameter for £;-norm.
The third term represents the physical constraint that
limits the numerical range of light ray intensities.

Since each term is convex in Eq. (8), whole function is
also convex. Hence, this function has a unique solution.

The convex optimization problem of Eq. (8) can be
solved by alternating direction method of multipliers [20],
which effectively minimizes the function with iterative
manner. By solving this problem, we can get the 4-D light
field Yc.

4.2 {1-norm regularization

In general, regularization is introduced to prevent over fit-
ting when the number of observations is not sufficiently
larger than that of unknown parameters. In this research,
we employ £1-norm of the unknown parameters c as a reg-
ularization term for preventing this problem. This term
makes most elements in ¢ become zero and it selects
important bases on the matrix B. The weight parame-
ter A, which is empirically determined in the experiment,
adjusts the number of selected bases.
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4.3 Physical constraint based on non-negative constraint
for light ray intensity

From physical limitation of radiant intensities, we can

make some constraints for intensities s; of rays j. Physi-

cally, all the light ray intensities must have non negative

values. This property gives:

s5i>0Vjej. 9)

On the other hand, as illustrated in Figs. 2 and 4, each
ray affects multiple regions x; on the diffuser B in differ-
ent positions and each region is also affected by multiple
radiant intensities s;. Here, if there is no ray except for rays
j» observed intensity o; illuminated by s; is represented by
Aj;si where A;; is a corresponding element of A in Eq. (4).
As a result, the intensity of o; is represented:

0; = Ao,iso +Aris1 + -+ Ajis;. (10)

Each term has a non-negative value, and thus this leads
the following constraint:

(11)

From Egs. (9) and (11), we can derive the following
constraint:

. 0;
0 <sj < min(—),

12
i€X; Al',l' (12

where Aj is a set of light rays j which hits to local region x;
on the diffuser B.

Above constraint can be formed as s € V, where V
is a closed convex set. From Eq. (6), this formulation
can be written as follows due to the orthogonality of the
matrix Y:

Yce V. (13)

4
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Range of radiant intensities
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Fig. 4 lllustration of physical constraint. Gray region indicates unilluminated region
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This constraint can be rewritten as a convex function
using indicator function ¢, : RM —[0,00], which is
defined by

0, ifYceV,

00, otherwise. (14)

w(X¥e) = {

5 Experiments

In this section, we verify the effectiveness of the pro-
posed method using a real data set. We first compare
our method with several kinds of approaches under
different conditions. In these experiments, since the
ground-truth light-field map is not available, we quan-
titatively verify the correctness of our algorithm by
computing the photometric errors that is the differ-
ence between the captured image and the correspond-
ing relit image using reconstructed light field in real
scene. In the following, we call the least square as LS,
£1-norm regularization as L1 and physical constraint
as PC.

5.1 Setup

Figure 5a shows an overview of experimental setup in the
dark room. An illumination source which is attached to
the translation motorized stage is placed for illuminat-
ing the diffuser from variable distances. We have used
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a polystyrene board as the diffuser, and we assumed
the board has the Lambertian transmission property. A
high dynamic range camera (ViewPLUS Xviii) with the
resolution of 642 x 514 pixels is located at the opposite
side of the diffuser from the light source and it captures
images as shown in Fig. 5b. Upper 16-bit depth is used as
intensity for each pixel. To reduce the noise effect of acqui-
sition process for all the experiments, we used an aver-
age images of 256 images captured with fixed setup. To
remove the perspective distortion effect in the captured
images, we rectified the captured images so as to orthog-
onalize images whose each pixel size corresponds to 1 x
1mm as shown in Fig. 5¢c. We have used these orthogonal-
ized images as input images. The illumination distance d
is defined as Omm when the illumination source touches
to the diffuser. In this experiment, a light field plane £
is defined in the coordinate system of the light source at
the position of the diffuser plane with d = Omm, for effi-
ciently representing all the 4-D rays emitted from the light
source. With above setup, we have estimated light field
maps using designated points which are extracted from
the saturated areas on a close-up image. Unless otherwise
stated, we have used four input images for estimating the
light field, the parameter of A = 0.01 in Eq. (8) and the
dimension F of the real spherical harmonics function is
set to 34.

image for distance 100mm

Fig. 5 Experimental setup. a Setup for measurement and flashlight with lens and reflector. b Captured image for distance 100mm. ¢ Rectified

C




Aoto et al. IPSJ Transactions on Computer Vision and Applications (2017) 9:13

It should be noted that, some reconstructed light
fields have negative radiant intensities. In this experi-
ment, we permit a negative intensity for generating relit
images.

5.2 Quantitative evaluation

In this section, we have employed a comparatively sim-
ple light source shown in Fig. 5a in which three LEDs
are horizontally arranged. In this experiment, for mak-
ing the discussion simple, we first gave three light source
positions for 4-D light field on £ by computing three
center points of saturated regions on the image shown
in Fig. 5c which is taken at the distance d = Omm.
We have estimated parameters of three anisotropic light
sources for given three points as 4-D light field. We
captured ten images of the lit diffuser, and in each
image, the light source was at a different position.
These zoomed images are shown in the top row of
Fig. 6. Among these ten images, four images taken with
the light source at distance d = (60,90, 120, 150mm)
are used as input images and the rest are used for
evaluation.

With this configuration, the relit images rendered by
estimated 4-D/2-D light-fields from the following six
methods are compared to show the effectiveness of the
proposed method.
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) 4-D light field reconstruction with L1 + PC,

) 4-D light field reconstruction with L1,
(III) 4-D light field reconstruction with PC,

) 4-D light field reconstruction by LS without L1 and
PC,
(V) 2-D light field reconstruction assuming an
anisotropic point light source, and
2-D light field reconstruction assuming a set of
isotropic point light sources.

Here, (I)~(III) are the variations of the proposed method
and (IV) is the baseline method®. For the method (V),
middle of given three light positions is used as a position
of a point light source since (V) does not have the spatial
dimension. For the method (VI), box-style region of the
diffuser shown in Fig. 5c¢ that contains 91 x 64 points is
used as the spatial distribution of lights on L.

Figure 7 shows light field maps estimated by the meth-
ods (I) to (VI). As we can see, each method gives different
light fields. In the followings, we discuss the differences of
above methods with further results.

5.2.1 Comparison of 4-D and 2-D light field reconstruction
methods

Figure 6 shows relit images for various light positions
rendered by estimated light fields shown in Fig. 7 for

30[mm]  45[mm] | 60[mm]

Captured
V) aIv) (111) (I (0] Image

(VD

.
®
®
®
&
O
=

105[mm] | 120[mm]

Fig. 6 Captured images and relit images by reconstructed light fields from compared methods with F = 34. (/) 4-D light field with L1 + PC, (/) 4-D
light field with L1, () 4-D light field with PC, (IV) 4-D light field by LS without L1 and PC, (V) 2-D light field with an anisotropic point light source, (V)
2-D light field with a set of isotropic point light sources. Dimension F of spherical harmonics function for ()—(V) is set to 34. Surrounding red boxes
indicate that these distances are included in a set of input images for light field estimation. Images are clipped for zooming-up
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Positive
180° 0° 180° 0
315° Negative
(I) 4-D (L1 + PC)
Positive
180° 0° 180° 0
15° Negative
270°
(II) 4-D (L1)
Positive
180° 0
Negative
90°
Positive
180° 0
Negative
70°
(IV) 4-D (LS)
Positive Positive
200 1
i
B i
£ -
o = — 0
180 0 g -
& 100 — 1
>_‘ —
225° Negative ) - : : Negative
0 100 200 300
X axis [mm]
(V) 2-D (an anisotropic point light (VI) 2-D (a set of isotropic point light
source) sources)
Fig. 7 Reconstructed light field maps for the light sources in Fig. 5a. Gray color indicates unobserved region
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\ — () 4-D (PCL1)

\ — () 4-D (L1)

5l \ —(1l)4-D (PC)

\ —(IV)4-D (LS)

| — (V) 2-D (directivity)
(VI)2-D (volume)

Normalized Sum of Absolute Photometric Errors

60 90 120 150 180 210 240 270
Distance [mm]

Fig. 8 Photometric errors between relit images and captured images.
Gray dashed lines indicate positions of input images

all the compared methods. Figure 8 shows estimation
errors which are defined as normalized sum of absolute
intensity differences between a ground-truth image and
a relit image. As we can see in Fig. 6, 4-D light field
based methods (I)-(IV) could reproduce three separated
lights on relit images for near range d =[30,45] despite
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2-D based methods could not separate them. From
Fig. 8, we can see that errors of both 2-D based meth-
ods are larger than that of 4-D based methods except
for the range d =[60,90] of the method (V). It is
considered that larger errors are due to over optimiza-
tion of the method (V) for near range images. From
the results of the methods (V) and (VI), it is obvi-
ous that the 2-D light field based methods do not have
capability to reproduce good relit images for this light
source. We can conclude that 4-D light field estima-
tion is necessary even for a comparatively simple light
source.

5.2.2 Effect of constraints

As shown in Figs. 6 and 8, there are very small quan-
titative and subjective differences in the results for
middle to far range d =[60,165] among compared
4-D based methods. However, for near range d =
[30,45], considerable differences are exposed. First, we
can see unnatural ripples around the lights for the meth-
ods (I) to (IV). The ripples for (IV) are harder than
others.

As shown in Fig. 7 (IV), LS gives large negative inten-
sities in estimated light field and it has caused over
parameter fitting problem. By comparing the pairs of
{I), AD)} and {(III), (IV)} in this figure, we can con-
firm that negative intensity on the estimated light field
is successfully suppressed by using PC. Although we
cannot see any subjective differences among relit images

30[mm] 45[mm] | 60[mm] | 75[mm]

F=34

F=24 F=29

F=19

F=14

for light field estimation. Images are clipped for zooming-up

Fig. 9 Relitimages by proposed method (I) with variable F. Surrounding red boxes indicate that these distances are included in a set of input images

105[mm] | 120[mm] | 135[mm]
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Fig. 10 Relit images by proposed method (I) with F = 69,79, and 89

90[mm]

105[mm)]

for (I), (II), and (III), quantitatively, the errors become
smaller when we employed L1 and the method (I) which
uses both PC and L1 gives the best scores for near
range.

5.2.3 Effect of dimension
Here, we confirm the effect of dimensions for spherical-
harmonics function on relit images. Figure 9 shows relit
images for variable F for the proposed method (I). Because
there are very small differences in far range images when
F is 34 or larger, in Fig. 10, we have shown the images for
near to middle range images for higher F = 69,79 and 89.
Figure 11 shows estimation errors for them. As shown
in these figures, the errors rapidly decrease as the dimen-
sion F is raised, slightly increasing then decreasing at
around F = 24, but then eventually leveling out. This
effect is considered to be caused by the difference of the
definitions in photometric errors, as Fig. 11 shows the
absolute photometric errors, but the proposed method’s
energy function, described in Eq. (8) minimizes the L2
norm of photometric errors. This effect is considered to

61e*3 i

00 10 20 30 40 50 60 70 80 90
Dimention F of Spherical Harmonics Function

Normalized Sum of Absolute Photometric Errors

Fig. 11 Photometric errors between relit images and captured
images for variable F

be caused by the difference of the definitions in pho-
tometric errors, although the errors in In Figs. 9 and
10, relit images for near range are continuously changed
and the separation of three lights becomes clearer for
higher F.

As shown in Figs. 9 and 10, We can confirm that the
ripples artifacts appeared especially for the near rage of
[30-45], become weaker when we can give more reso-
lution for angle direction, i.e., F become higher. In the
case, the model does not have enough resolution for angle
direction, the model cannot represent both the details of
shapes of lights and background region behind the lights.
In this situation, from the characteristic of the spheri-
cal harmonic function, repetitive patterns easily appear in
the image. On the other hand, the reason, why the rip-
ples for (IV) become harder than others, is considered as
an over-fitting problem of standard linear programming.
Our method successfully reduced this error by convex
optimization. Ripples around lights, mentioned in the pre-
vious section, are almost disappeared when F = 89. From
these results, we can say that we need high dimensional
parameters for spherical-harmonics function for accurate
reconstruction of 4-D light field.

5.2.4 Effect of spacial resolution and arrangement of virtual
light sources

Here, we confirm the effect of spacial resolution and

arrangement of virtual light sources on relit images.

Figure 12 shows the position of virtual light sources (a)

to (e), and Fig. 13 shows relit images for them modeled

by the proposed method (I). If some virtual light sources

a b c d e
Fig. 12 Variational position of virtual light sources. A red point
indicates a position of virtual light source
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Fig. 13 Relit images by reconstructed light field from variable pattens of light source positions with £ = 34. Each variable pattern of light source
positions (a) - (e) corresponds to variational position of virtual light sources in Fig. 12. Surrounding red boxes indicate that these distances are
included in a set of input images for light field estimation. Images are clipped for zooming-up

exist near the actual light sources positions (except (d) in
Fig .12), they could reproduce a similar results with (a) for
range d = [60, 165].

However, in the range d = [30, 45], different images are
generated except for the images (a) and (e). For (a), we
arranged virtual light sources at the center positions of
highlights and for (e) number of point light sources are
increased as shown in Fig. 12. From this comparison, we
can say that as far as we can put virtual light sources
in front of the true light positions (i.e., centers of high-
lights), good results will be given with minimum number
of virtual light sources. By comparing (e) with F = 69 in
Fig. 10, which have the same number of parameters with
(e), we can see that latter result is better than (e)’s. It
means the angle resolution is more important than the
special resolution, as long as we can put virtual lights to
appropriate positions. When we cannot arrange them for
centers of highlights (case (d)), the relit image becomes
different shapes from ideal ones. On the other hand, when
we gave more virtual light sources to different positions
from highlights, as shown in (b) and (c), undesired high-
lights appear on near range images. This is considered as
the effect of an overfitting problem for these unnecessary
positions. It should be noted that except for near range
images, good results are obtained even for (b) and (c), and
intensities of undesired highlights on near range images
are also darker than those of true highlights. It is because
the L1 norm suppress the value of coefficients by selecting
an important basis of a spherical harmonic function.

5.2.5 Computational cost
In order to reconstruct 4-D light field with the method
(I), it takes 31 h for F = 34 in this experiment using a

PC ( intel® core™ i7-3970 3.50GHz x 12, Memory 32
GB, C++ implementation). The core time for computation
spent for solving a convex optimization problem in Eq. (8).
In this experiment, 5.3 GB memory was required for our
implementation. When we set F = 89, it takes more
than 1 week for 4-D light field reconstruction. In order to
reduce the cost, we should find more efficient bases for
representing light field and efficient way for solving the
problem.

5.3 Results for more complex lights

We have conducted further tests for the proposed method
using more complex light sources shown in Fig. 14. In this
experiment, we automatically set 35 light source positions
for 4-D light field estimation by computing the center of
saturated regions on the image with d = Omm. Figures 15
and 16 show the captured images and relit images with

Fig. 14 Light sources used for further tests. a Triangularly-aligned
shell type LED. b Flash light with lens and reflector
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120[mm] | 135[mm] | 150[mm]

165[mm)]

Fig. 15 Captured images of triangularly aligned shell type LED and relit images by reconstructed light field form two method: (/) 4-D light field with
L1 +PCand (V) 4-D light field by LS. Dimension F of spherical harmonics function of (/) and (/V) is 34, and 35 light source positions are used to
reconstruct 4-D light field. Surrounding red boxes indicate that these distances are included in a set of input images for light field estimation

F = 34 in Fig. 144, b, respectively. In these figures, the relit
images by the proposed method with L1 and PC (I) and LS
based method (IV) are compared.

The light source in Fig. 14a has three LEDs triangu-
larly arranged. We can see that projected shape of each
light looks like torus, and part of three shapes are over-
lapped as shown in Fig. 15. In the relit images, both the
methods (I) and (IV) could reproduce good results for the
position where input images were captured (red boxed
images). However, the LS method (IV) gave completely
different shapes for near range d =[30,45] due to the
over fitting. In contrast, the proposed method (I) could
reproduce much better relit images even for near range.

The light source in Fig. 14b is a flash light with lens and
reflectors. For this light source, although the method (I)
recovers higher frequency component in the relit images
compared with the method (IV), relit results does not
reach a satisfactory level as shown in Fig. 16. It is consid-
ered that the poor results are due to the lack of parameters
to model the 4-D light field for this complex light, and
more input images are also necessary to acquire stable
results. At this moment, we need more computational
resources to estimate this kind of complex 4-D light field

in which virtual light source positions, arose by reflectors
in the light, are spatially distributed.

6 Conclusion

In this paper, we have presented a novel 4-D light field
reconstruction technique utilizing a physical constraint
and a regularization. We have formulated the light field
reconstruction problem as a convex optimization prob-
lem. This optimization problem was designed to decom-
pose the observed intensities on the measurement plane
into light ray intensities. Unlike conventional works, the
proposed method can estimate the 4-D light field from a
few images without special optics such as a mirror-array,
a lens array, and filters. As shown in experiments, we
could confirm the effectiveness of both the physical con-
straint and £;-norm regularization. A remaining weakness
in the current implementation of the proposed method
is the difficulty for increasing dimensions of parameters
due to its high computational cost which prevents to han-
dle more complex lighting environments. In order to relax
this problem, we should find more efficient bases for rep-
resenting the light model to reduce the computation cost,
in future work.

30[mm)]

O

45[mm]

Captured
Image

@

Fig. 16 Captured images of flash light and relit images by reconstructed light field form two method: (/) 4-D light field with L1 + PC and (/V) 4-D
light field by LS. Dimension F of spherical harmonics function of (/) and (/V) is 34, and 35 light source positions are used to reconstruct 4-D light field.
Surrounding red boxes indicate that these distances are included in a set of input images for light field estimation
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Although we assumed the board has Lambertian-
transmission property and scattering effect is ignored,
which did not give obvious effects in the results in the
experiment, for more precise reconstruction, calibration
method for the diffuser board should be considered. In
addition, we should confirm the sensitivity of the pro-
posed method by using images with artificially added
noises.

Endnotes

In this equation, the intensity o; is represented by
a continuous system. The effect of the attenuation and
incident angle are considered by the integral of ray j.

2In this paper, we regard p as constant by assuming the
transmission property of the diffuser is Lambertian.

3For LS, we iteratively minimize the function from zero
vector using conjugate gradient method, since B in Eq. (7)
has small singular values due to the insufficient observa-
tions in this experiment. In this case, LS cannot give a
unique solution or a stable solution by linear solvers.
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