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Abstract

In this work, we propose a new approach for dense disparity estimation in a global energy minimization framework.
We propose to use a feature matching cost which is defined using the learned hierarchical features of given left and
right stereo images and we combine it with the pixel-based intensity matching cost in our energy function.
Hierarchical features are learned using the deep deconvolutional network which is trained in an unsupervised way
using a database consisting of large number of stereo images. In order to perform the regularization, we propose to
use the inhomogeneous Gaussian Markov random field (IGMRF) and sparsity priors in our energy function. A sparse
autoencoder-based approach is proposed for learning and inferring the sparse representation of disparities. The IGMRF
prior captures the smoothness as well as preserves sharp discontinuities while the sparsity prior captures the
sparseness in the disparity map. Finally, an iterative two-phase algorithm is proposed to estimate the dense disparity
map where in phase one, sparse representation of disparities are inferred from the trained sparse autoencoder, and
IGMRF parameters are computed, keeping the disparity map fixed and in phase two, the disparity map is refined by
minimizing the energy function using graph cuts, with other parameters fixed. Experimental results on the
Middlebury stereo benchmarks demonstrate the effectiveness of the proposed approach.
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1 Introduction

Stereo vision has been an active research area in the
field of computer vision for more than three decades. It
aims to find the 3D information of a scene by using two
or more 2D images captured from different viewpoints.
Stereo vision has a wide range of applications, including
3D reconstruction, video coding, view synthesis, object
recognition, and safe navigation in spatial environments.
The main goal of binocular stereo vision is to find corre-
sponding pixels, i.e., pixels resulting from the projection
of the same 3D point onto the two image planes. The
displacement between corresponding pixels is called dis-
parity, and obtaining disparity at each pixel location forms
a dense disparity map. For simplicity, the stereo images are
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rectified so that the corresponding points lie on the same
horizontal epipolar line and this reduces the correspon-
dence search to 1D.

In general, disparities are found by comparing pixel
intensities or their features in the two images. However,
estimation of disparities is an ill-posed problem due to
depth discontinuities, photometric variation, lack of tex-
ture, occlusions etc., and a variety of approaches have been
proposed for the same [1]. A comparison of current dense
stereo algorithms is given in the Middlebury website [2].
Dense stereo matching algorithms can be classified into
local and global methods. Local approaches aggregate the
matching cost within a finite window and find the dispar-
ity by selecting the lowest aggregated cost. These methods
assume that the disparity is the same over the entire win-
dow and hence produces unreliable matches in textureless
regions and near depth discontinuities. Use of adaptive
windows [3], multiple windows [4], adaptive weights [5],
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or bilateral filtering [6] in local methods reduce these
effects but cannot avoid it completely. Global approaches
tackle such problems by incorporating regularization such
as explicit smoothness assumption and estimate the dense
disparity map by minimizing an energy function. The
most prominent stereo algorithms for minimizing the
global energy function are based on graph cuts [7] and
belief propagation [8] optimization methods. In general,
the energy function represents a combination of a data
term and a regularization term that restricts the solution
space. Global approaches perform well in textured and
textureless areas as well as at depth discontinuities. In this
paper, we solve the dense disparity estimation problem in
a global energy minimization framework.

1.1 Motivation and related work

Global stereo methods mainly focus on minimizing
energy functions efficiently to improve performance.
However, solutions with lower energy do not always corre-
spond to better performance [9]. Therefore, it is important
to define a proper energy function than to search for opti-
mization techniques in order to improve the performance.
Hence, in our work, we propose a new and a suitable
energy function for estimating the dense disparity map in
an energy minimization framework.

In the global stereo methods, the data term is generally
defined by using the pixel-based matching cost between
the corresponding pixels in the left and right images [1].
A pixel-based cost function determines the matching cost
for disparity on the basis of a descriptor that is defined
for one single pixel. Pixel-based cost function can be
extended to patch (window)-based matching cost by inte-
grating pixel-based costs within a certain neighborhood
and such cost are based on census transform, normalized
cross correlation, etc. [10]. Most of the pixel-based match-
ing costs are built on the brightness constancy assumption
and include absolute differences (AD), squared differences
(SD), sampling insensitive absolute differences of Birch-
field and Tomasi (BT), or truncated costs [10]. They rely
on raw pixel values, and are less robust to illumination
changes, view point variation, noise, occlusion, etc. One
can represent stereo images in a better way by using a
feature space where they are robust, distinct, and transfor-
mation invariant [11, 12]. Feature-based stereo methods
use the features such as edges, gradients, corners, seg-
ments, or hand-crafted features such as scale-invariant
feature transform (SIFT) [13, 14]. In order to obtain dense
disparities, feature matching has been used in the global
stereo framework. In [15] and [16], nonoverlapping seg-
ments of stereo images are used as features, and the dense
stereo matching problem is cast as an energy minimiza-
tion in segment domain instead of pixel domain where the
disparity plane is assigned to each segment via graph cuts
or belief propagation. These approaches assume that the
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disparities in a segment vary smoothly which is not true in
practice due to the depth discontinuities. Also, the solu-
tion here relies on the accuracy of segmentation which
is itself a non trivial task. In [17], the sparse correspon-
dences are found by feature points and then the dense
correspondences are obtained from these sparse matches
using the propagation and seed growing methods. In such
approaches, the accuracy depends on the initial support
points. In [18], the mutual information (MI)-based fea-
ture matching is used in a Markov random field (MRF)
framework for estimating the dense disparities. However,
matching with basic image features still results in ambigu-
ities in correspondence search, especially for textureless
areas and wide baseline stereo. Hence, to reduce these
ambiguities, one needs to use more descriptive features.
Recently in [19], authors proposed a SIFT flow algorithm
for finding the dense correspondences by matching the
SIFT descriptors while preserving spatial discontinuities
using MRF regularization. In [20], a deformable spatial
pyramid model is proposed in a regularization framework
for estimating dense disparities using multiple SIFT fea-
tures. Hand-crafted features of stereo images are designed
and then embedded in an MRF model in [21]. The draw-
back of these approaches is that designing such features is
computationally expensive, time consuming, and requires
domain knowledge of the data.

In recent years, learning features from unlabeled data
using unsupervised feature learning and deep learning
approaches have achieved superior performance in solv-
ing many computer vision problems [22-25]. Feature
learning is attractive as it exploits the availability of large
amount of data and avoids the need of feature engineer-
ing. It has also attracted the attention of stereo vision
researchers in recent years. The method proposed in [26]
uses the deep convolutional neural network for learning
similarity measure on small image patches, and the train-
ing is carried in a supervised manner by constructing a
binary classification dataset with examples of similar and
dissimilar pair of patches. Based on the learned similarity
measure, the disparity map is estimated using state-of-
the-art local stereo methods. Here, the learning is done on
small size patches instead of entire image, i.e., global con-
textual constraint is not taken into account while learning
the similarity measure. The method does not provide a
single framework for dense disparity estimation though it
improves the results of state of the art stereo methods. In
this work, we focus on the approaches which use feature
matching cost in a global energy minimization frame-
work for estimating the dense disparities. In [27], authors
proposed unsupervised feature learning for dense stereo
matching within a energy minimization framework. They
learn the features from a large amount of image patches
using K-singular value decomposition (K-SVD) dictionary
learning approach. The limitation of their approach is
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that the features are learned from a set of image patches
and do not consider the entire image, i.e., global contex-
tual constraint is not taken into account while learning
the features. Also, higher level features are not learned,
instead, they are estimated using a simple max pooling
operation from the layer beneath. Here, the higher layer
correspondence matches are used to initialize the lower
layer matching and hence the accuracy depends on the
higher layer matches only. Recently, unsupervised feature
learning and deep learning methods have shown superior
performance in learning efficient representation of images
at multiple layers [24, 28-33].

In this paper, we propose to use a feature matching cost
which is defined using the learned hierarchical features
of stereo image pair. In order to learn these hierarchi-
cal features, we propose to use a deep deconvolutional
network [31], an unsupervised feature learning method.
The deep deconvolutional network is trained over a large
set of stereo images in an unsupervised way, which in
turn results in a diverse set of filters. These learned fil-
ters capture image information at a different levels in the
form of low-level edges, mid-level edge junctions, and
high-level object parts. Features at each layer of decon-
volutional network are learned in a hierarchy using the
features in the previous layer. The deep deconvolutional
network is quite different to the deep convolutional neu-
ral networks (CNN). Deep CNN is a bottom-up approach
where an input image is subjected to multiple layers of
convolutions, nonlinearities, and subsampling whereas
deep deconvolutional network is a top-down appraoch
where an input image is generated by a sum over convolu-
tions of the feature maps with learned filters. Unlike deep
CNN [33], the deep deconvolutional network does not
spatially pool features at successive layers and hence pre-
serves the mid-level cues emerging from the data such as
edge intersections, parallelism, and symmetry. They scale
well to complete images and hence learn the features for
the entire input image instead of small size patches. It
makes them to consider global contextual constraint while
learning. In order to estimate the dense disparity map,
we combine our learning-based multilayer feature match-
ing cost with the pixel-based intensity matching cost and
hence our data term has the sum of these costs.

Since the disparity estimation is an ill-posed problem,
use of global stereo matching makes it better posed by
incorporating a regularization prior in the energy func-
tion. Selection of the appropriate prior leads to a better
solution. One common feature of the disparities is that
they are piecewise smooth, i.e., they vary smoothly except
at discontinuities, thus making them inhmogeneous. This
spatial correlation among disparities can be captured by
MRE-based models. It is well known that MRFs are the
most general models used as priors during regulariza-
tion when solving ill-posed problems [34]. Hence, many of

(2017) 9:2

Page 3 of 15

the current better-performing global stereo methods are
based on the MRF formulations as noted in [1]. Homo-
geneous MRF models tend to oversmooth the disparity
map and fail to preserve the discontinuities [35]. Hence, a
better model would be one that reconstructs the smooth
disparities while preserving the sharp discontinuities. In
order to achieve this, variety of discontinuity preserving
MREF priors are used in global stereo methods as proposed
in [36—40]. Many of these techniques use single or a set of
global MRF parameters which are either manually tuned
or estimated. These global parameters may not adapt to
the local structure of the disparity map and hence fail to
better capture the spatial dependence among disparities.
We need a prior that considers the spatial variation among
disparities locally. This motivates us to use an inhomo-
geneous Gaussian markov random field (IGMRF) prior
in our energy function which was first proposed in [41]
for solving the satellite image deblurring problem. IGMRF
can handle smooth as well as sharp changes in disparity
map because the local variation among disparities is cap-
tured using IGMRF parameters at each pixel location. In
our approach, the IGMRF parameters are not known and
are estimated.

Although IGMRF prior captures the smoothness with
discontinuities, it fails to capture additional structure such
as sparseness in the disparity map. In general, disparity
maps are made up of homogeneous regions with lim-
ited number of discontinuities resulting in redundancy.
Because of this, one can represent the disparities in a
domain in which they are sparse. This transform domain
representation can be obtained using the fixed set of basis
such as discrete cosine transform (DCT), discrete wavelet
transform (DWT), or it can be learned as an overcom-
plete dictionary using large number of true disparities. In
[42], the disparities are reconstructed from few disparity
measurements using the concepts of compressive sensing.
Here, the sparseness is represented over a fixed wavelet
basis and the accuracy of disparity estimation depends
on the reliable measurements. Learned sparseness using
the overcomplete dictionary has been successfully used as
regularization for solving the inverse problems [43, 44].
The advantage of using a learned dictionary is that the
representation would be more accurate than obtained
with the use of fixed basis and this is done by adapting
its atoms to fit a given training data [45]. Recently in [46],
authors proposed a two-layer graphical model for infer-
ring the disparity map by including a sparsity prior over
learned sparse representation of disparities in an exist-
ing MRF-based stereo matching framework. Here, the
sparse representation of disparities are inferred by a dic-
tionary which is learned using a sparse coding technique
which can cope up with non stationary depth estima-
tion errors. Although it performs better when compared
to discontinuity preserving homogeneous MRF prior, the
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solution can be improved by using inhomogeneous MRF
prior. Also, their method is complex and computationally
intensive.

A practical problem with dictionary learning techniques
is that they are computationally expensive because the dic-
tionaries are learned by iteratively recovering sparse vec-
tors and updating the dictionary atoms [45, 46]. Though
these methods perform well in practice, they use a linear
structure. Recent research suggests that non-linear, neu-
ral networks can achieve superior performance in learning
efficient representation of images [22, 24, 28, 29]. One
example of these networks is a sparse autoencoder. It
encodes the input data with a sparse representation in
hidden layer and is trained using a large database of unla-
beled images [29]. Sparse autoencoders are very efficient
and they can be easily generalized to represent compli-
cated models. In this paper, we propose to use the sparse
autoencoder for learning and inferring the sparse rep-
resentation of disparity map. The sparse autoencoder is
trained using a large set of true disparities. We define a
sparsity prior using the learned sparseness of disparities
and incorporate this prior in addition to IGMRF prior in
our energy function. Such sparsity priors capture higher
order dependencies in the disparity map and complement
the IGMREF prior.

In order to obtain the dense disparity map, we propose
an iterative two-phase algorithm. In phase one, sparse-
ness is inferred using the learned weights of the sparse
autoencoder, and IGMRF parameters are computed based
on the current estimate of disparity map, while in the
second phase, the disparity map is refined by minimizing
the energy function with other parameters fixed. We use
graph cuts [7] as an optimization technique for mini-
mizing our proposed energy function. Our experimental
results demonstrate the effectiveness of our learning-
based feature matching cost, IGMRF prior, and sparsity
prior when used in an energy minimization framework.
The experiments indicate that our method generates the
state-of-the-art result and can compete the state-of-the-
art global stereo methods.

The outline of the paper is as follows. In the “Problem
formulation” section, we formulate our problem of
dense disparity estimation in an energy minimization
framework. In the “Deep deconvolutional network for
extracting hierarchical features” section, we present the
deep deconvolutional network model for learning the
hierarchical features of stereo images and then discuss
the formation of our learning-based multilayer feature
matching cost. The IGMRF prior model and estimation of
IGMRF parameters are addressed in the “lGMRF model
for disparity” section. In “Sparse model for disparity”
section, we discuss the sparse autoencoder for learn-
ing and inferring the sparse representation of disparities
and then discuss the formation of sparsity prior. The
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formation of final energy function and the proposed algo-
rithm for dense disparity estimation are discussed in the
“Dense disparity estimation” The experimental results
and the performance of the proposed approach are dealt
in the “Experimental results” section, and concluding
remarks are drawn in the “Conclusion” section.

2 Problem formulation

In this paper, our main goal is to find the disparity map
d € RM*N for a given rectified pair of stereo images, left
image I; € RM*N and right image Iz € RM*N_ In other
words, we wish to compute the disparity d(x,y) at every
pixel location (x, y) in the reference image such that pix-
els in I project to their corresponding pixels in the right
image Iz when the correct disparity is selected. In the
framework of global approach, the dense stereo matching
problem is formulated in terms of energy minimization
where the objective is to estimate the disparity map d by
minimizing the following energy function:

E(d) = Ep(d) + Ep(d), (1)

where the data term Ep(d) measures how well the d to
be estimated agrees with I; and I of a scene. The prior
term Ep(d) measures how good it matches with the prior
knowledge about the disparity map. For finding the cor-
respondences, we consider search from left to right as
well as from right to left and hence relax the traditional
ordering constraint used in disparity estimation.

In our work, the data term is defined as a sum of the
intensity and feature matching costs i.e.,

Ep(d) = E;(d) + nEp(d), (2)

where p controls the weightage of Er(d). For a given d,
the intensity matching cost E;(d) measures the dissimilar-
ity between the corresponding pixel intensities of I; and
I, while the feature matching cost Ep(d) measures the
dissimilarity between the corresponding learned features
of I; and Iy. In order to define E;(d), we use the robust
and sampling insensitive measure proposed by Birchfield
and Tomasi (BT) in [47]. At pixel location (x,y) having
disparity d(x,y), it is given as minimum absolute inten-
sity difference between I1 (x,y) and Ig(x + d(x, y),y) in the
real valued range of disparities along the epipolar line and
hence can be written as:

E/(d) =) min ((

min |7 (x,y) — Irg(x + d(x,y),y)l) ,r’),
xy)

dxy)+}
3)

where 7/ is the truncation threshold which is used to
make intensity matching cost more robust against out-
liers. For defining the feature matching cost Er(d), we
extract the features of stereo image pair at multiple layers
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of deep deconvolutional network and is discussed in the
next section.

In order to perform the regularization, we model d using
its prior characteristics and form the energy term Ep(d).
We define Ep(d) as a sum of IGMRF and sparsity priors,
and it is given as:

Ep(d) = Eigmre(d) + ¥ Esparse (d), (4)

where Eigvmre(4) and Egparse (d) represent the IGMRF and
sparsity prior terms, respectively. Here, y controls the
weightage of the term Egparse (d).

3 Deep deconvolutional network for extracting
hierarchical features

In this section, we first describe the method of learning

the hierarchical features of a given stereo pair and then

describe how these features are used to define our feature

matching cost Er(d).

Deconvolutional network [31] is an unsupervised fea-
ture learning model that is based on the convolutional
decomposition of images under sparsity constraint and
generates sparse, overcomplete features. Stacking such
network in a hierarchy results in a deep deconvolutional
network. Layers of such network learn both the filters
and features as done in an image deconvolution problem
in which given a degraded image, the task is to estimate
both the blur kernel and the restored image. In order to
explain how deep deconvolutional network extract hierar-
chical features, we first consider a deep deconvolutional
network consisting of a single layer. To train this network
for extracting features, a training set consisting of large
number of stereo images Z={I',...,I"} are used where
each image I’ is considered as an input to the network.
Here, m; is the number of images in the training set Z,
and we consider only left images of different scenes for
training the network. Note that one may use right stereo
images as well. Let P; be the number of 2D feature maps in
a first layer. Considering the input at layer 0, we can write
each image I'as composed of Py channels {Ii, . ,If,o }. For
example, if we consider a color image, then we have Py=3.
Each channel ¢ of input image I’ can be represented as a
linear sum of P; feature maps s; convolved with filters f,, .
ie.,

Py
> s @ fpe =1, (5)
p=1

where @ represents the 2D convolution operator. Note
that in this work, we use gray scale stereo images only and
hence Py = 1. Equation (5) represents an underdetermined
system since both the features and filters are unknown and
hence to obtain a unique solution, a regularization term
is also added that encourages sparsity in the latent feature
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maps. This gives us an overall cost function for training a
single-layer deconvolutional network as:

un a P() P1 2 Pl
QD =D | 72| 2% ®hoe— L) +2_ Il
i=1 c=1 ||p=1 2 p=1

(6)

Here, |s}’!',|1 is the L1-norm on the vectorized version of
s;. The relative weighting of the reconstruction error of
each I' and sparsity of their feature maps s; is controlled
by the parameter «. This network is learned by minimiz-
ing C1(Z) with respect to s;,s and f, s when the input to
network is Z. Note that the set of filters f, . are the param-
eters of the network, common to all images in the training
set while each image has its own set of feature maps s;.

The single-layer network described above can be
stacked to form a deep deconvolutional network consist-
ing of multiple layers. Let the deep network is formed by
NL number of layers, (/ = 1...NL). This hierarchy is
achieved by considering the feature maps of layer / — 1 as
the input to layer /, [ > 0. Let P;_; and P; the number
of feature maps at layer / — 1 and /, respectively. The cost
function for training the /th layer of a deep deconvolu-
tional network can be written as a generalization of Eq. (6)
as:

ms aPl—l Py 2 Py
! i ! i i 1
D =D | 5 2| 28 @po) =t | + 2 Ispl' |
i=1 c=1 | p=1 2 p=1

7)

where sé ,_; and S1i7 ; are the feature maps of image I' at
layer [ — 1 and [, respectively, and thus, it shows that
layer [ has as its input coming from P;_; channels. ];f,c are

the filters at layer / and g},lc are the elements of a fixed
binary matrix that determine the connectivity between
the feature maps at successive layers, i.e., whether s}‘g ;1s

connected to si ;1 or not. For [ = 1, we assume that

glf,'c is always 1, but for / > 1, we make this connectivity
as sparse. Since P; > 1, the model learns overcomplete
sparse, feature feature maps. This structure is illustrated
in Fig. 1.

A deep deconvolutional network consisting of NL num-
ber of layers is trained upwards in a layer-wise manner
starting with the first layer (/ = 1) where the inputs are the
training images Z. Each layer / is trained in order to learn a
set of filters ];l,c which is shared across all images in Z and
infer the set of feature maps s; , of each image I “in 7. To
learn the filters, we alternately minimize C;(Z) w.r.t. the
filters and feature maps by keeping one of them constant
while minimizing the other. We follow the optimization
scheme as proposed in [31].
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Fig. 1 A deep deconvolutional network illustrating learning of /th layer
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3.1 Feature encoding

Once the deep deconvolutional network is trained, we can
use it to infer the multilayer features of a given left I; and
right I stereo images for which we want to estimate the
dense disparity map. The network described above is top-
down in nature, i.e., given the latent feature maps, one can
synthesize an image but there is no direct mechanism for
inferring the feature maps of a given image without mini-
mizing the cost function given in Eq. (7). Hence, once the
network is learned/trained, we apply given I; and I sepa-
rately as input image to the trained deep deconvolutional
network with the fixed set of learned filters and infer the
feature maps st il and s” l of I; and I at layer [, respec-
tively, by mmlmlzmg the cost functions C;(I1) and C;(I),
respectively. Once, they are learned, we create a feature
vector at each pixel location in /; and Ir separately. In
order to obtain the features of I at a layer [, we stack the
P; number of inferred feature maps st il and obtain a sin-

gle feature map ZZL where at each pixel location (x,y) in
ZfL, we get a feature vector of dimension P; x 1. Similarly,
using the same process we obtain the features of Ip. Thus,

ZfL and ZfR represents the /th layer features of I; and Iy,
respectively.

3.2 Defining Ef(d)
Once the multi-layer features of I; and I are obtained, we
can define our feature matching cost Er(d) as:

NL
Ex@) =Y. Y min (12} @y) = Z[ e+ dxpl’) . (8)

I=1 (%)

At each pixel location (x,y) having disparity d(x,y), it
measures the absolute distance between the feature vec-
tor ZfL (%,y) and corresponding matched feature Z{R (x+
d(x,),y). Here, tf is the truncation threshold which is
used to make feature matching cost more robust against
outliers and NL is the number of layers in the network.
These multiple layers feature matching technique highly
constrains the solution space and hence results in unam-
biguous and accurate disparities.

In our energy function, the data term Ep(d) is not
constructed using the feature matching cost Er(d) only
because the deep deconvolutional network extracts the
sparse (significant) features in stereo images at few loca-
tions such as edges, corners, junctions. If one uses feature
matching cost as a data term, then at those pixel locations
where the features are not significant, it results in ambigu-
ous disparity estimates. One can obtain the disparities
only at the pixel locations where significant features have
been obtained. However, this results in a sparse disparity
map. Our goal here is estimate the dense disparity map,
i.e., finding the disparity at every pixel location. Although
this can be obtained simply by interpolating the sparse
disparity, it leads to inaccurate disparities at occluded
regions and disparity discontinuities. Since we use inten-
sity term as well, the intensity values are available at every
pixel location, giving us a dense disparity map. Hence, in
our work, we define our data term using a combination
of intensity and feature matching costs. The combina-
tion of intensity and features matching not only produce
dense disparities but also better constrains the solution
and hence results in accurate disparity map.
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4 IGMRF model for disparity

Object distances from the camera, ie., depths are
inversely proportional to disparities and hence are made
up of various textures, sharp discontinuities as well as
smooth areas making them inhomogeneous. In our work,
we use an IGMRF prior model which can adapt to the local
structure of the disparity map, i.e., enforces the smooth-
ness in disparities while preserving the discontinuities.
IGMRE-based prior model has been successfully used in
solving satellite image debluring problem [41], multireso-
lution fusion of satellite images [48], and super-resolution
of images [49]. For modeling IGMREF, Ejgmre(d) is cho-
sen as the square of finite difference approximation to the
first-order derivative of disparities. Considering the differ-
entiation in horizontal and vertical directions at each pixel
location, one can write EjgMmre(d) as [41]:

Eigyre(d) = Y b (dx — 1) — d(x,9))
()

+bY d@xy —1) —d@y))*. ()

Here, b* and bY are the spatially adaptive IGMRE
parameters in horizontal and vertical directions, respec-
tively. Thus, {bﬁ;w, bé’y)} forms a 2D parameter vector of
IGMREF at each pixel location (x, y) in the disparity map. A
low value of b indicates the presence of an edge between
two neighboring disparities. These parameters help us
to obtain a solution which is less noisy in smooth areas
and preserve the depth discontinuities in other areas. The
IGMRF parameters at each pixel location (x,y) are esti-
mated using the maximum likelihood estimation (MLE)
and are computed as [41]:

1

bE = ) 10

@) max(@(d(x — 1,y) — d(x,9))2, 4) (10
1

Y = ) 11

@) max(4(d(x,y) —d(x,y — 1))2, 4) (1)

In order to avoid computational difficulty, we set an
upper bound b = 1/4 whenever gradient becomes zero,
i.e., whenever the neighboring disparities are the same.

In order to estimate IGMRF parameters, we need the
true disparity map which is unknown and has to be esti-
mated. Therefore, to start the regularization process, we
use an initial estimate of disparity map obtained using a
suitable approach and compute these parameters which
are then used to estimate the d. In our proposed algo-
rithm, these parameters and d are refined alternatively
and iteratively for obtaining the better d.

5 Sparse model for disparity
In order to model the higher order dependencies in the
disparity map, we model the disparity map in our energy
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function by another prior called sparsity prior Esparse(d).
The sparsity prior regularizes the solution by modeling
the sparseness in d. In this work, we present a novel
method for learning and inferring the sparse representa-
tion of disparities using sparse autoencoder, which is then
used to define the sparsity prior. An autoencoder is an
artificial neural network (ANN) which sets the desired
output same as the input and has one hidden layer [29].
It comprises of an encoder that maps an input vector
to a hidden representation and a decoder that maps this
hidden representation back to a reconstructed input. In
reality, finding the sparse representation of a disparity
map is computationally expensive, and therefore, a bet-
ter choice would be to find the sparse representation of
disparity patches of small size individually and average
the resultant sparse patches at the end in order to get
complete sparse representation of disparity map.

Let the input to an autoencoder be a disparity patch of
size i/n x /n pixels, extracted at location (x, y) in d and it
is ordered lexicographically as column vector d*?) € R”.
Also, let the corresponding hidden representation of 4*¥)
at hidden layer be a®” e RX and the reconstructed out-
put be d*) e R”. Thus, the number of units at input,
hidden, and output layers are #, K, and #, respectively. The
autoencoder has weights (W, U, r,s), where W € R™K g
the encoder weight matrix between the input and hidden
layers, U € RX*" is the decoder weight matrix between
the hidden and output layers, and » € RX and s € R”
are the bias weight vectors for hidden and output lay-
ers, respectively. For a fixed set of weights (W, U, r,s), the
a®? and d*?) can be computed as follows:

a™ =f (WTd(W) + r) : (12)

d®) — f (uTaOc,y) + S) ) (13)
where f is an activation function and we use sigmoid for
this. An autoencoder is called as sparse autoencoder when
the sparsity constraint is imposed on its hidden layer.
Sparse autoencoder learns an overcomplete sparse repre-
sentation of data in the hidden layer when the number
of hidden units K are greater than the number of input
units #, i.e.,, K > n. An example of a sparse autoencoder is
shown in Fig. 2.

Let a;x’y ) be the activation of hidden unit j. A sparsity
constraint on the activations of hidden units are imposed
by forcing them to be inactive most of the time. A unit is
active when its activation value is close to one and inactive
when it is close to zero. We define p as a global sparsity
parameter for all hidden units, typically a small value close
to zero. Let p; be the average activation of hidden unit j
(averaged over training set). Then, the sparsity constraint



Nahar and Joshi IPSJ Transactions on Computer Vision and Applications

(2017) 9:2

Page 8 of 15

Input

Hidden (Sparse)

Output

Fig. 2 A sparse autoencoder with n = 3 and K = 4. Here +1 represents a bias unit

for each jth hidden unit is enforced by a penalty term
which penalizes p; deviating significantly from p as:

K K

A P 1—0p
Y KL(pllpy) =Y _ plog ++(1—p)log —, (14)
j=1 =1 P 1=#

where KL(p||p)) is the Kullback-Leilbler (KL) divergence.
This term has a value 0, if 5; = p; otherwise, it increases
monotonically as p; diverges from p.

Consider a training set consisting of large number of
disparity patches g:{d(l), d®, ..., dma }, with each patch
d® e R”. One can extract these disparity patches from
the available ground truth disparity maps. Using the
known disparity patches, we can train the sparse autoen-
coder to learn the weights (W, U, r,s). To do this, the
following objective function is formed using Egs. (12),
(13), and (14) as:

o2 (5107 s am(r(wa ) )
m = 2 2
n K K n

ST e Y wy?

i=1 j=1 i=1 j=1
K
+B Y _KL(pllpp). (15)
j=1

Here, the first term represents the average reconstruc-
tion error over all training inputs. The second term is a

regularization term on the weights to prevent the over-
fitting by making them smaller in magnitude, and A con-
trols the relative importance of this term. 8 controls the
weightage of the third term which corresponds to sparsity
penalty term. We minimize this Eq. (15) w.rt. W, U, r, s
using well known back propagation algorithm [50].

Once the autoencoder is trained, d can be modeled by
the sparsity prior Egparse(d) as follows:

2
Esparse(d) = (Z) Hd(x’y) _f (UTCl(x’y) + S) H2 (16)
xy

Esparse(d) measures how well each disparity patch at
location (x,y) in d agrees with its sparse representa-
tions. In our proposed approach, the disparity map and its
sparse representation are inferred alternatively.

6 Dense disparity estimation
E(d) = Z min (( min _|I(x,y) — Ir(x + d(x,9),) }) , r’)
o dxy)*3
NL
+ " Z Z min <‘Z;L (x,y) — ZIIR (X + d(xvy)!y) » TF)
=1 (%)

+ Z (bi;,y) (dx —1,9) — d(x,y)* + bé,y) d@xy—1)
(%,9)

—d@)?) 4y 3 [ —f (UTa® +5) Hz
(%)

(17)
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Our main goal is to estimate the dense disparity map
using a given pair of stereo images in an energy mini-
mization framework. Our data term defined in Eq. (2) is
formed by adding intensity and feature matching costs
using Egs. (3) and (8), respectively. Similarly, our prior
energy term defined in Eq. (4) is formed by adding the
IGMREF and sparsity priors using Egs. (9) and (16), respec-
tively. Finally, our proposed energy function defined in
Eq. (1) can be rewritten as given in Eq. (17) and we
minimize it using graph cuts optimization based on
a-B swap moves [7]. We do not consider the occlu-
sions explicitly but they are handled by clipping match-
ing costs using thresholds 7 = {t/,zf} that prevents
the outliers from disturbing the estimation (see Egs. (3)
and (8)).

In order to estimate the dense disparity map, we pro-
pose an iterative two-phase algorithm. It proceeds with
the use of an initial estimate of disparity map and iter-
ates and alternates between two phases until conver-
gence as given in Algorithm 1. We use a classical local
stereo method [1] for obtaining the initial disparity map
in which the absolute intensity differences (AD) with
truncation, aggregated over a fixed window is used as
matching cost. In order to reduce computation time, we
optimize this cost by graph cuts instead of the clas-
sic winner take all (WTA) optimization. Postprocessing
operations such as left-right consistency check, interpo-
lation, and median filtering [1] are applied in order to
obtain a better initial estimate for faster convergence while
regularizing. However, any other suitable disparity esti-
mation method can also be used in obtaining the initial
estimate.

Algorithm 1: Proposed algorithm

Input: Stereo image pair /; and I, a set of ground truth
disparity patches Q={d(1), do,. . ., d(md)}, and a set
of stereo images Z={I', ..., I"}.

1 Train a sparse autoencoder using G by minimizing Eq.(15)
and obtain weights (W, U, r, 5);

2 Train a deep deconvolutional network consisting of NL
number of layers, by minimizing Eq.(7) for each layer / and
learn a set of filters;

3 Infer the multi-layer features ZIIL and ZIIR of I; and I,

respectively (/ =1...NL);

Obtain an initial disparity map dp;

Initialization: d = do;

repeat

Phase 1:With d being fixed, infer the sparse vector
a%?) for each disparity patch d*?) in d using Eq.(12).

Compute IGMRF parameters bf;’y) and b%;,y) using
Eqs.(10) and (11), at each pixel location;

8 Phase 2: With {a®?)}, {béc,y)’ bz;’y)} fixed as obtained

in phase 1, minimize the Eq.(17) for d using graph cuts;

9 until convergence;

NS G e
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In general, for nonconvex energy functions, graph cuts
result in a local minimum that is within a known factor
of global minimum. In order to ensure global minimum,
we use an iterative optimization with proper settings of
parameters. At every iteration, the IGMRF parameters
and sparseness are refined in order to obtain better dis-
parity estimates (converging towards global optima). The
number of iterations may vary for different stereo pairs
and the choice of initial estimate.

7 Experimental results

In this section, we demonstrate the efficacy of the pro-
posed method by conducting various experiments and
evaluating our results on the Middlebury stereo bench-
mark images [2]. In order to perform the quantitative
evaluation, we use the percentage of bad matching pixels
(B%) as the error measure with a disparity error tolerance
3. The error measure is computed over the entire image
as well as in the nonoccluded regions. For an estimated
disparity map d, the B% is computed with respect to the
ground truth disparity map g as follows [1]:

1
B = M+N (Z:) ld(x,y) —gx, )| > 6,
Xy

(18)

In this work, all the experiments were conducted on a
computer with Core i7-3632QM, 2.20 GHz processor and
8.00 GB RAM.

7.1 Parameter settings

We first provide the details of various parameters used in
training the deep deconvolutional network. A two-layer
deep deconvolutional network was trained over m;=75 left
stereo images obtained from the Middlebury 2005 and
2006 datasets and Middlebury 2014 training dataset [2].
Considering NL = 2 i.e, for a two-layer deep architec-
ture, we set the number of feature maps as P; = 9 and
P, =45, respectively. The feature maps at layer 1 were fully
connected to the input having single channel. In order to
reduce the computations, each feature map in layer 1 was
connected to any nine feature maps in layer 2. In other
words, 36 feature maps in layer 2 were connected to a pair
of maps in layer 1 and remaining 9 were singly connected.
In this way, we obtained 9 and 36 %2+ 9 = 81 filters at lay-
ers 1 and 2, respectively. The parameter « in Eq. (7) was set
as 1 and the filters of size 7 x 7 were learned. These param-
eters were manually set as per the experimental settings
done in [31] except that we used gray scale stereo images
for training, i.e., Po=1. With these parameter settings, our
two-layer network was trained to obtain the set of filters.
The learned filters at the first and second layers are shown
in Fig. 3 where the first layer learns Gabor like filters, and
the filters in the second layer lead to mid-level features
such as center-surround corners, T and angle-junctions,
and curves.
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b

Fig. 3 Filters learned at first and second layers of deep deconvolutional network. a Number of filters learned at first layer are 9. b Number of filters
learned at second layer are 81 where 36 filters in pair are shown in color and remaining 9 filters are shown as gray scale

We now provide the parameters used while training the
sparse autoencoder. We trained the sparse autoencoder
using a set of m; = 5 x 10° true disparity patches of
the stereo images used during the training of deep decon-
volutional network. The size of each disparity patch was
chosen as 8 x 8, i.e., n = 64. In order to achieve the over-
completeness in hidden layer, we set K=4 * n, i.e., the
number of hidden units were K = 256. The parameters in
Eq. (15) were empirically chosen as A = 1074, B = 0.1,
and p = 0.01. With these parameter settings, the sparse
autoencoder was trained to obtain the weights (W, U, r, s).
The learned weights W between the input and the hidden
layers are shown in Fig. 4.

. T
Ak !.!r'r nd¥ -J Al

N P P

Fig. 4 Learned weights W between the input and the hidden layer in
the trained sparse autoencoder. Here, each square block is of size

8 x 8 which shows the weights between a hidden unit and each
input unit. Note that there are 256 hidden and 64 input units

'I;!UH. 1‘ !l' %

Note that the training of deep deconvolutional network
and the autoencoder is an offline operation, and hence,
they do not add to the computational complexity. In order
to estimate the dense disparity map, we experimented on
the Venus, Cones, and Teddy stereo pairs, belonging to
Middlebury stereo 2001 and 2003 datasets [2] which were
different from the training datasets used earlier. We also
performed the experiments using the recently released
Middlebury stereo 2014 (version 3) dataset. Our algo-
rithm was initialized with the initial estimate of disparity
map and the algorithm converged with in five iterations
for all the stereo pairs used in our experiments. While
minimizing Eq. (17), the data cost thresholds {t/, ¥} were
set as 0.08 and 0.04, respectively, and the parameter p
was chosen as 1. The parameter y was initially set to
10~* and exponentially increased at each iteration from
10~* to 107!, We used the same parameters for all the
experiments, and this demonstrates the robustness of our
method.

7.2 Performance evaluation using different data terms
Ep(d) with IGMRF prior

As discussed earlier, the data term Ep(d) in our energy
function is defined using a combination of E;(d) and
Er(d). In order to demonstrate the effectiveness of our
proposed data term, we consider the energy functions
consisting of different data terms Ep(d) and IGMRF prior
only. Note that we do not consider the sparsity prior here.
We then compare the performance using the proposed
Ep(d) with Ep(d) made up of traditional pixel based data
terms such as AD and BT. We also consider BT +gradient
data term for comparison where the BT is combined with
gradient-based feature matching. Note that our intensity
matching cost Ej(d) is made up of BT. Since, in the pro-
posed method, we use {rI tF } for data cost truncation and
hence in order to perform a fair comparison, data terms
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Table 1 Performance evaluation in terms of percentage of bad
matching pixels computed over the whole image with § = 1.
Here, the optimization of energy function is carried out using
different data terms Ep(d) with IGMRF as prior term Ep(d)

Ep(d) Venus Teddy Cones
AD 1.90 16.49 12.14
BT 0.95 15.67 11.89
BT+gradient 0.89 14.9 11.32
Ei(d) + Er(d) 0.40 11.41 9.98

of the other methods are also used with truncation on
their costs. The results of these experiments are summa-
rized in Table 1. The results show that the approach using
proposed Ep(d) outperforms those with traditional pixel-
based Ep(d). These results show the effectiveness of using
the learning-based multilayer feature matching cost Er(d)
in our approach. In other words, when the intensity and
the learning-based feature matching are combined, the
estimated disparities are more robust and accurate. The
results also show that data term defined using the deep-
learned features gives better disparities as compared to the
one which uses basic gradient features.

We now demonstrate the performance of our approach
by varying the number of layers in the feature match-
ing cost Ep(d). Once again, we consider the same energy
function consisting of data term Ep(d) and IGMRF prior
where Ep(d) is defined using Ej(d) and Ep(d). We first
obtained the disparity map when Ep(d) is defined using
the learned features of first layer only. Next, the results are
obtained when Er(d) is defined using the learned features
of both first and second layers. In other words, we con-
sider NL = 1 and NL = 2 in Eq. (8) for these two cases.
Figure 5 shows that the performance improves when we
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use two-layer feature matching. We also experimented
with the use of three layers but we did not find significant
improvement when the number of layers NL is greater
than 2 (see Fig. 5). Based on these observations, we used
only two-layer deep deconvolutional network in our work.
This shows the effectiveness of the use of deep learning
with limited number of layers.

7.3 Performance evaluation using different prior terms
Ep(d) with proposed Ep(d)

As discussed earlier, the prior term Ep(d) in our energy
function is defined using the combination of IGMRF and
sparsity priors. We consider the energy function con-
sists of proposed data term Ep(d) and Ep(d) and evaluate
the performance of our approach using different choices
of Ep(d). For doing the same, we first choose Ep(d) as
Eigmre(d) and compare by choosing other discontinuity
preserving MRF priors such as truncated quadratic, trun-
cated linear, and Potts models. The results in Table 2 show
that the approach using the IGMRF prior combined with
proposed Ep(d) performs significantly better when com-
pared to the use of other discontinuity preserving priors.
This shows the effectiveness of using IGMRF prior since
it better captures the spatial variation among disparities.
We then evaluate the performance by choosing Ep(d) as
a combination of Ejgmrr(d) and Egparse(d). For this, we
consider three cases. In the first case, the Egparse(d) is
obtained using the fixed DCT bases, in the second case,
it is learned using the K-SVD dictionary learning method,
and in the last case, we define the Eparse(d) using the
proposed sparse autoencoder. As seen from the Table 2,
the results are significantly improved when the sparsity
prior is combined with the IGMRF prior and the proposed
data term. This is expected because IGMRF and spar-
sity priors together capture the disparity characteristics

16 .
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Fig. 5 Results in terms of percentage of bad matching pixels using proposed £p(d) with IGMRF prior by varying the number of layers NL in E¢(d)
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Table 2 Performance evaluation using different prior terms Ep(d)
with proposed Ep(d). The errors are shown in terms of bad
matching pixels and these are computed over the whole image
with §=1

Ep(d) Venus Teddy Cones
Truncated quadratic 1.95 1538 11.62
Truncated linear 091 12.86 10.96
Potts 1.11 13.93 11.01
Eiomrr (d) 0.40 1141 9.64
EiaMrr () +Esparse (d) using DCT 0.38 11.1 9.36
Eiamrr (d)+Esparse (d) using K-SVD 030 10.60 9.12
Eiamrr (@) +Esparse (d) using autoencoder 0.20 9.76 846

in different ways and their combination serves as a better
regularizer. The results also show that the use of spar-
sity prior obtained using proposed sparse autoencoder
perform better when compared to those obtained using K-
SVD or fixed basis. This is because the sparseness is better
captured by the learned weights of autoencoder.

7.4 Qualitative and quantitative assessment and
comparison with state of the art methods

Here, we first show the qualitative and quantitative perfor-

mances of our algorithm experimented using Middlebury

stereo 2001 and 2003 datasets [2]. Figure 6 shows the

estimated disparity maps of the proposed approach using

these datasets. One can see that the final disparity maps
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are piecewise smooth and visually plausible. We also dis-
play the error maps associated with the final disparity
maps as shown in the last column of Fig. 6. The error
maps show the regions where the estimated disparities
differ from the ground truth (black and gray regions cor-
respond to errors in occluded and non occluded regions,
respectively and white indicates no error). We can see that
the proposed method has higher accuracy in discontinu-
ous as well as nonoccluded regions. This is because the
IGMREF prior preserves the discontinuities and the spar-
sity prior learns the edge-like sparse features in disparity
map, and using these two with the proposed data term
produces accurate disparities. As can be seen from Fig. 6,
our method not only preserves geometrical details near
depth discontinuities but performs better in textureless
regions as well. We mention here that although we do
not consider occlusions in our problem formulation, our
method works well in these regions as well. Performance
improvement in occluded regions is due to the presence
of data term truncation thresholds, i.e., T = {tf, tf}.

The quantitative assessment of our algorithm experi-
mented using Middlebury stereo 2001 and 2003 datasets
[2] is shown in Table 3. In order to validate the results
of our method, we compare it with state-of-the-art global
dense stereo methods in terms of percentage of bad
matching pixels (B%). The compared approaches include
feature based [16-18] and regularization based such as
MREF priors [36—39], Mumford Shah regularization [51],
ground control points [52], learned conditional random
field (CRF) [53], and sparsity prior [42, 46] methods.

v 1
I
P
Ground Truth

the fifth and the sixth columns, respectively

Initial

Proposed Error map

Fig. 6 Experimental results for the Middlebury stereo 2001 and 2003 datasets (2], Venus (first row), Teddy (second row), and Cones (third row). The left
image /; and the ground truth disparity map are shown in first and second columns, respectively. The third column shows the initial disparity map
used in optimizing the energy function given in Eqg. (17). The final disparity and the error maps estimated using the proposed method are shown in
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Table 3 Quantitative evaluation on Middlebury stereo 2001 and 2003 datasets [2] and comparison with state-of-the-art global dense
stereo methods in terms of bad matching pixels over entire image as well as non occluded regions with § =1

Method Venus Teddy Cones
All Nonocc All Nonocc All Nonocc

Initial 347 2.00 19.65 561 1643 715
Proposed 0.20 0.10 9.76 3.44 846 2.36
AdaptBP [16] 0.21 0.10 7.06 422 7.92 248
DoubleBP [38] 045 013 8.30 3.53 878 290
GCP [52] 053 0.16 115 6.44 949 3.59
TwoStep [17] 045 0.27 126 742 10.1 4.09
SemiGlob [18] 1.57 1.00 122 6.02 9.75 3.06
20P [39] 0.49 0.24 154 109 108 542
CompSens [42] 0.68 0.31 1330 7.88 9.79 397
MultiGC [37] 313 2.79 17.6 12.0 11.8 4.89
Mumford [51] 0.76 0.28 143 9.34 991 4.14
GC[36] 344 1.79 250 16.5 18.2 7.70
CRF [53] 13 - 1.1 - 10.8 -
Sparse [46] - - 11.98 - 8.14 -

Here, en dash indicates the result not reported. First row shows the results using initial estimate

These results are compared without using any post pro-
cessing operations. We do not compare our method with
global stereo methods based on handcrafted and learned
features [19-21, 27] since their results are not available
for the Middlebury datasets. As seen from the Table 3,
our method performs best among all the other methods
in nonoccluded regions. It also gives least bad match-
ing pixels over entire image as well as in nonoccluded
regions for the Venus stereo pair. We see that the over-
all performance of the proposed method is comparable

to state-of-the-art global stereo methods. The results also
indicate the effectiveness of the proposed energy function
in the global energy minimization framework for dense
disparity estimation.

Finally, we show the qualitative and quantitative per-
formance of our algorithm experimented on Middlebury
stereo 2014 datasets [2] that consists of 15 training and
15 test stereo pairs. Figure 7 shows the estimated dis-
parity maps of the proposed approach using some of
these datasets. In order to validate and compare the

rows, respectively

Fig. 7 Experimental results for the Middlebury stereo 2014 datasets [2], Adirondack, Motorcycle, Pipes, Playroom, PlaytableP, Recycle, Shelves, Vintage.
The left image I, ground truth and disparity map estimated using the proposed method for each stereo pair are shown in the first, second, and third
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performance of our method with other latest stereo meth-
ods listed on [2], we submitted these estimated disparity
maps online to the server available on Middlebury website
[2] which in turn returned the overall evaluation and com-
parison chart. Since the test dataset does not have ground
truth, evaluation is only done by submitting the estimated
disparity maps on this online server. We mention here
that one cannot adjust the parameters for test datasets
because the submission can be done only once. The quali-
tative and quantitative results and the comparisons can be
seen on Middlebury stereo evaluation page. We achieve
a ranking of 43 for training set and ranking of 48 on test
set. Our method does not rank among the top methods
because the accuracy of our method is sensitive to the
parameters of the model. One can enhance the results by
carefully choosing the parameters. Experimental results
indicate that our method is better than the state-of-the-art
regularization-based methods and comparable to other
latest stereo methods.

8 Conclusion

We have presented a new approach for dense disparity
map estimation based on inhomogeneous MRF and spar-
sity priors in an energy minimization framework. The data
term is defined using the combination of intensity and
the learning-based multilayer feature matching costs. The
feature matching cost is defined over the deep learned
features of given stereo pair, and we have used deep
deconvolutional network for learning these hierarchical
features. The IGMRF prior captures the smoothness in
disparities and preserves the discontinuities in terms of
IGMREF parameters. The sparsity prior is defined over the
learned sparseness of disparities where the sparse rep-
resentation of disparities are learned using the sparse
autoencoder. We have presented an iterative two-phase
algorithm for disparity estimation where in phase one,
the disparity map is estimated by minimizing our energy
function using graph cuts and in phase two, the IGMRF
parameters and sparse representation of disparity maps
are obtained. Experiments conducted on various datasets
of Middlebury site verify the effectiveness of the pro-
posed data term, IGMRE, and sparsity priors when used
in an energy minimization framework. Performance of the
proposed method is comparable to many of the better
performing and latest dense stereo methods.
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