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Abstract

Recent years have witnessed the dramatic evolution in visual data volume and processing capabilities. For example,
technical advances have enabled 3D modeling from large-scale crowdsourced photo collections. Compared to static
image datasets, exploration and exploitation of Internet video collections are still largely unsolved. To address this
challenge, we first propose to represent video contents using a histogram representation of iconic imagery attained
from relevant visual datasets. We then develop a data-driven framework for a fully unsupervised extraction of such
representations. Our novel Bag-of-Iconics (BoI) representation efficiently analyzes individual videos within a large-scale
video collection. We demonstrate our proposed BoI representation with two novel applications: (1) finding video
sequences connecting adjacent landmarks and aligning reconstructed 3D models and (2) retrieving geometrically
relevant clips from video collections. Results on crowdsourced datasets illustrate the efficiency and effectiveness of
our proposed Bag-of-Iconics representation.
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1 Introduction
Taking photos and video clips has never been easier. One
can record videos at high frame rates (e.g., 240 fps are
available on the iPhone), in high resolution (4K reso-
lution available on GoPros), or even in 360° [1]. Such
technical convenience yields a sheer amount of user-
generated visual data being shared over the Internet. For
example, over 400 h of videos are uploaded to YouTube
every minute [2]. Accordingly, such a huge amount of
visual data poses great challenges on storing, analyzing,
indexing, and searching these unstructured photo/video
collections. To unleash the wealth of information embed-
ded within the ever expanding corpora of visual media,
we need efficient and effective content-based data asso-
ciation algorithms for large-scale unordered photo/video
collections.
Developing technologies for large-scale visual data col-

lections is at the core of computer vision research. Today,
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state-of-the-art methods can process static Internet photo
collections for different vision tasks. For example, 3D
modeling methods have striven to handle large datasets
[3–6], as well as improving model robustness and com-
pleteness [7]; modern visual recognition systems can
build rich feature hierarchies from large annotated image
datasets [8] and perform complicated recognition tasks
like image classification [9], object detection [10], and
semantic segmentation [11].
Compared to photo collections, the current scope of

video analysis mostly focuses on the per-sequence level
analysis, with examples of video summarization [12] and
action recognition [13]. Discovering inter-sequence rela-
tionships among collections of videos is still a largely
unaddressed problem.
To tackle such challenge, we propose a novel algorithm

that first summarizes common visual elements/entities
within the internet video collections as “iconics.” Iconic
images, as used in Frahm et al. [6] and Heinly et al.
[7], provide a compact yet informative summarization
of the common visual elements occurring within a
visual dataset. By representing videos as a histogram of
iconic occurrences, we can develop efficient algorithms
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to discover inter-sequence relationships within a video
collection. In this paper, we apply the proposed Bag-
of-Iconic video representation for novel video analysis
applications: in addition to the 3D model alignment task
as in our earlier work [14], we demonstrate the usefulness
of the Bag-of-Iconic video representation with a novel
geometry-aware video retrieval task.
Our major innovations include:

1. A global Bag-of-Iconics video representation for
collection level video content analysis;

2. A fully automatic and unsupervised framework to
find iconic images and build the BoI video
representations;

3. Application of the BoI video representation to
discover observational connectivities among known
3D landmark models for model alignment;

4. Employing the BoI video representation for
geometry-aware video retrieval.

Our paper is organized as follows: Section 2 reviews
relevant related works. Section 3 introduces our pro-
posed video representation and explains how to establish
it. Section 4 demonstrates how to use the video repre-
sentation to further enhance model completeness from
Internet 3D reconstructions. Section 5 shows geometry-
aware video retrieval using the proposed representation.
Section 6 concludes our paper.

2 Related work
Large-scale crowdsourced visual data collections have
long driven the development of computer vision research.
The scope of research covering large-scale visual datasets
is broad. In this paper, we mainly focus on discovering
inter-sequence relationships within unordered video col-
lections. Thus, we only review relevant solutions to our
problem.

2.1 Photo collections
3D modeling first needs to establish pairwise epipo-
lar geometry relationships within photo collections, thus
provides a good example for mining inter-element con-
nections within unordered visual datasets. Large-scale
structure-from-motion systems started with datasets of a
few thousand images [3, 4]. Using image retrieval tech-
niques for overlap prediction, Agarwal et al. [5] processed
150 thousand images in a single day on a computer clus-
ter. Frahm et al. [6] reconstructed 3 million images in
one day on a single computer utilizing a compact binary
image representation for clustering. Recently, Heinly et al.
[7] pushed the envelope to tackle a world-scale dataset
(100 million images) by using a streaming paradigm
to identify connected images by looking at each image
only once.

One of the core computational challenges and the key to
improved scalability for large-scale structure-from-motion
systems is the efficient mining for element connectivities
within photo collections. Li et al. [15] introduced the con-
cept of iconic images to model the relationship between
different image clusters via iconic scene graphs. Frahm
et al. [6] and Heinly et al. [7] further utilized the iconic
representation for better scalability. Similarly, our method
extends the concept of iconic images to represent visual
video contents.
Compared to photo collections, video datasets can con-

tain a much larger number of frames even for small col-
lections. For example, our experiments are conducted on
two video collections with more frames than the largest
photo collection in [7]. Methods designed for photo
collections do not consider the video temporal redun-
dancy, thus cannot scale to video collection problems
easily.

2.2 Video collections
As a dual concept to unstructured photo datasets,
unordered Internet video collections also exhibit spar-
sity and lack of structures in the dataset. Tompkin et al.
[16] proposed to identify common scenes as “portals”
to explore the structure and relationship within a video
collection. Using such “portals” as nodes, a connectivity
graph can be built from a video collection for interac-
tive visualization and exploration. Our work also identifies
common scene elements (“iconics”), but we aim at using
a fully unsupervised approach to creating Bag-of-Iconic
video representations, which can enable more interesting
applications.

2.3 Video summarization
Compared to photo collections, the additional temporal
domain in video data, not only provides more informa-
tion than static images but also brings high redundancy.
Selecting informative frames/segments from the videos is
essential to achieve high scalability and throughput for
real-world large-scale applications. Motion information
is a common cue for keyframe selection [17] in video
processing. Ahmed et al. [18] explicitly consider epipo-
lar geometry when selecting keyframes for 3D modeling.
Compared to keyframe selection, video summarization
aims to find the most meaningful/interesting video seg-
ments, which can help users to skim long video sequences.
Ajmal et al. [19] gives an anatomy of video summariza-
tion methods, we refer interested readers to [19] for more
details.

2.4 Video retrieval
One application for large video collections is to retrieve
relevant videos for a given query video. Hu et al. [20]
provided a detailed survey on the indexing and retrieval
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of content-based video retrieval. In this paper, we pro-
pose the concept of “geometry-aware” video retrieval: i.e.,
finding videos that have the same background/entities for
a given query video. Such rigid geometric constraints are
hard to fulfill by existing video indexing schemes, while
our proposed Bag-of-Iconics representation provides a
direct solution.
Considering the large volume of the video collections,

high-dimensional feature representations can be slow to
search/retrieve. Binary hashing [21] together with Ham-
ming space indexing and searching [22] provides a com-
putationally efficient way to scale-up to the size of video
databases.

2.5 Camera trajectories
To align separate 3D models into a joint model, we need
a camera trajectory that links multiple 3D models. Visual
odometry [23] provides a solution of reconstructing such
camera trajectories from visual data. Different from visual
odometry techniques, Zheng et al. [24] jointly estimates
the topology of the objects motion path and reconstructs
the 3D object points for dynamic objects in a static scene.
In contrast, our work needs to recover the camera motion
trajectory to align 3Dmodels and is focused on identifying
relevant video (sub)-sequences from a large video collec-
tion rather than obtaining the camera motion trajectories.

3 Bag-of-Iconic representation
To build the proposed Bag-of-Iconic representation for
videos, we first need to distill the temporal redundancy in
the videos by selecting only keyframes (Section 3.1). Visu-
ally similar keyframes are then grouped together and each
keyframe cluster represents some commonly captured
visual entities or structures. An iconic image is selected to
represent each keyframe cluster (Section 3.2). The set of
representing iconic images, when viewed in aggregation,
forms a “visual codebook” describing the captured visual
contents. At individual video sequence level, it encodes
how frequently each visual element occurs in a video, and
it characterizes and summarizes the video’s content. To
utilize the visual codebook, we perform geometric verifi-
cation between the video keyframes and the iconic images
to accumulate the histogram of iconic image occurrences
(Section 3.3).

3.1 Video keyframe selection
Different from images, the additional temporal domain in
videos brings more visual information at the cost of high
redundancy and enormous data volumes. Selecting only
keyframes from the raw video streams achieves a balance
between keeping visual information and lowering com-
putational overhead. To this end, we divide each video
v = {

f |f ∈ v
}
into small non-overlapping segments vs ⊆ v

where each segment is represented by one keyframe kf ∈
vs ⊆ v.

vsi ∩ vsj = ∅, ∀i, j, i �= j (1)

Ideally, different keyframes should represent distinct
visual elements. The keyframe extraction process
must take geometric information into consideration.
In addition, the high volume of video collections
requires the keyframe selection algorithm to be com-
putationally efficient. With such goals in mind, we
choose a GPU-accelerated KLT tracker [25] to select
keyframes.
For a new video v, we start processing the first video seg-

ment from the beginning and we select the first frame as
the first keyframe kf 1. Shi-Tomasi’s corner points x1 [26]
are detected within kf 1. At any given timestamp t + 1,
we keep track of the previous frame f t and the previ-
ous keypoints xt . The KLT tracker then computes the
tracked feature points xt+1 for the current frame f t+1.
If the ratio of tracked feature points xt+1 over the cur-
rent keyframe feature points xi falls below the pre-defined
threshold of |xt+1|/|xi| < 20%, the current frame f t+1

is selected as the new keyframe for the new video seg-
ment. Shi-Tomasi’s corner points are then re-detected for
the new keyframe kf i+1 and KLT tacker is re-initialized.
Please refer to Fig. 1 for examples of selected video
keyframes.
We add the following processing to increase the robust-

ness of the KLT tracker: (a) To compensate for the cam-
era exposure changes, we estimate a global gain ratio β

between successive frames f t and f t+1 [27]. Given cor-
responding pixels xt and xt+1 in the frame pair, pixel
intensities are related by the multiplicative camera gain
model:

f t+1 (
xt+1) = βf t

(
xt

)
(2)

Fig. 1 Examples of extracted keyframes. For visualization purposes, video frames are shown in grayscale and only subset of feature tracks are
visualized in color
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(b) In crowdsourced video collections, watermarks on
border regions of video frames can lead to constantly
tracked feature points. Such consistent feature tracks do
not help to distinguish the actual visual content between
frames. We discard the detection and tracking in video
border regions to suppress watermarks. (c)We apply addi-
tional forward and backward tracking consistency checks
to remove bogus feature tracks.

3.2 Codebook extraction
Similar to large-scale structure-from-motion systems, we
enforce a strict epipolar geometry relationship (funda-
mental matrix or essential matrix [28]) when grouping
keyframes together. However, pairwise geometric verifi-
cation is computationally infeasible for large keyframe
collections. Inspired by Heinly et al. [7], we adopted a
streaming clustering approach.
Each image cluster has a representing iconic image.

SIFT features [29] of all belonging images within the
cluster are grouped into a Bag-of-Visual-Word (BoVW)
vector. Such augmented BoVW vector is used as the fea-
ture representation of the iconic images. Iconic images
are indexed in a vocabulary tree [30] for fast retrieval. For
each new image I, a small set of iconic images (2 in our
case) is retrieved using vocabulary trees. Geometric verifi-
cation is performed between the unseen image I and every
retrieved iconic image. Based on the registration results,
different actions are taken: (1) if the new image I fails to
register to any retrieved iconic images, it will form its own
new cluster with itself being the iconic image; (2) if I reg-
isters to multiple iconic images, the registered clusters are
merged together as a connected component; and (3) if the
new image registers to only one iconic image, image I is
added to that cluster.
The first image for each image cluster is chosen as

the initial iconic image. Then for each image cluster, the
iconic images are updated when different clusters merge

together or the size increase of the cluster exceeds a cer-
tain threshold. The image that contains the most visual
words is selected as the new iconic image in that cluster.
Such process, although with great scalability and

throughput, has two issues for extracting compact code-
books. First of all, Heinly et al. [7] constrain the resource
consumption by discarding slowly growing image clusters.
Depending on the processing ordering of images, such
early-stopping strategy can leave similar images in disjoint
clusters. Since we treat each iconic image as one entry
in the codebook, different codebook elements represent-
ing the same visual content can cause ambiguity for later
processing. In addition, the total number of discovered
image clusters is theoretically unbounded. This causes lit-
tle practical trouble for the 3D reconstruction problems
in Heinly et al. [7], but high dimensionality of the code-
book can significantly threaten the efficiency of storing,
indexing, and searching large video datasets.
To address such issues, we run a second pass of the clus-

tering algorithm on the keyframe collection to regularize
the extracted codebook. Keyframes are randomly shuf-
fled into different orders before the second pass streaming
process. By processing the images one more time in dif-
ferent order, separated image clusters due to ordering and
discarding reasons can be agglomerated together. Fur-
thermore, image clusters with less than 200 entries are
removed from the codebook to reduce the codebook car-
dinality. Iconic images from all discovered image clusters
after the second streaming pass will form the codebook
C = {ic0, ic1, . . . , icm} together. Examples of iconic images
and corresponding image clusters are shown in Fig. 2.

3.3 Video representation extraction
Having extracted keyframes from videos and built code-
book C, by generalizing the Bag-of-Visual-Words concept
we can build a global descriptor H(v) for each video v.
Video keyframes are assigned to high-level “words” in

Fig. 2 Visualization of image clustering on London Flickr dataset (see Section 4.4). First row: iconic views for different connect components. From
left to right: Big Ben, Westminster Abbey, London Eye, Buckingham Palace, and Tower Bridge. Second row: selected images from one of the Big Ben
image clusters. Images cropped for visualization purposes. Best view in color
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the codebook (iconic images). TF-IDF (term frequency-
inverse document frequency) weighted numbers of occur-
rence of each iconic view ic ∈ C are then accumulated
into a histogram, which is our proposed video descriptor
H(v) = [h(0), h(1), . . . , h(m)]. Strictly speaking, occur-
rence means a valid geometric registration exists between
an iconic image ic and a given keyframe kf.

h(i) = WTFIDF

⎛

⎝
∑

kf∈v
GV (kf , ici)

⎞

⎠ , ici ∈ C. (3)

where GV (kf , ic) is an indicator function that returns
1 upon successful geometric verification between
keyframe kf and iconic image ic, and 0 otherwise.
WTFIDF() is the term frequency-inverse document
frequency weighting function w.r.t. elements in the
iconic codebook C. Weighted histogram H(v) are then
normalized to unit length. Compared to using the L2
normalization scheme alone in Wang et al. [14], adding
the TF-IDF weight scheme can better adjust to the
bias that some visual elements appear more frequently
in general.
Considering the potentially large number of iconic

images, to make the video representation extraction pro-
cess practical, we only perform geometric verification
for each keyframe kf with only the two most simi-
lar iconic images retrieved using the indexed vocab-
ulary tree, similar to the codebook extraction process
(Section 3.2),

The similarity between the visual content of two videos
vi and vj can be computed as the sum of intersections
between their histogram representations H(vi) and H(vj):

S
(
H(vi),H(vj)

) =
m∑

k=0
min

(
hi(k), hj(k)

)
, (4)

4 3Dmodel connection
Recent advances in large-scale structure-from-motion
have striven to handle larger photo collections [5, 6],
while improving model robustness and completeness [7].
However, existing methods usually generate 3D models
restricted to individual landmarks. We notice two data
deficiencies issues that lead to this lack of geospatial
connectivity of the 3D models attained from photo col-
lections. Firstly, crowdsourced photos tend to be highly
redundant. The viewing directions also tend to converge
to a given landmark’s most salient regions. Secondly, sam-
pling density erodes towards the model’s periphery. Such
sampling deficiencies lead to much fewer images in the
photo collection depicting scenes in-between landmarks
of interest. In addition, state-of-the-art structure from
motion systems do not use exhaustive pairwise matching
for large-scale datasets. Under-sampled connectivities are
more likely to be discarded during the 3D reconstruction
process [31].
Auxiliary data sources, like videos, are thus necessary

to overcome the data deficiency in photo collections
and to obtain more complete models. Intuitively, many
sight-seeing videos captured with wearable cameras or

Joined Models

Video Collection Bag of Iconics Representation
Connecting Video 

Segments

Iconic Codebook 
from Image Sets

Image Collection

Disjoint Models

Fig. 3 Alignment pipeline overview
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a

b

Fig. 4 Clustering results on Videoscapes video dataset (see Section 4.4) Codebook is extracted on the London Flickr image collection (see
Section 4.4). Different video clusters are shown in different colors. a Ground-truth GPS locations. b Video clusters

mobile phones, directly record such missing connectivity
information between landmarks, e.g., GoPros worn by the
user that continuously capture video. Such geospatially
connecting video sequences can be used to join separate
3D models by aligning them to the common camera
trajectories. Here, we propose to use our Bag-of-Iconic
video representation to efficiently identify such video
liaisons from a video collection. An overview can be
found in Fig. 3.
Crowdsourced video and image collections can differ

greatly in their visual content. Common visual elements

(scenes, structures, objects, be identified to bridge
this gap. We use [7] to obtain 3D models from photo
collections. The streaming clustering process naturally
provides us with a set of “iconic” images, which we
can use as the codebook C. We propose to uncover the
hidden visual connections by reusing the photo col-
lection iconics to represent video contents. Frequent
co-occurrences of different visual elements in video
sequences strongly indicate the possible connections
between different landmarks. Such co-occurrence rela-
tionships are efficiently uncovered via clustering over

London Eye

Westminster 
Abbey

Big Ben

Tower of London

Tower Bridge

Reichstag

Brandenburg Gate Berlin Cathedral

Berlin FernsehturmSt. Mary’s Church

Fig. 5 Examples of identified landmark groups. Best view in color
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Table 1 Statistics on crowdsourced image and video collections (Section 4.4)

Dataset
Number of images Processing time (h)

Registered Iconics Total Stream Densify SfM Total

Berlin Flickr 865,699 37,544 2,661,327 18.46 1.89 5.57 25.92

London Flickr 3,716,916 103,290 12,036,991 90.75 7.09 33.83 131.67

Videos Length (h) Frames Keyframes Registered Clusters

London YouTube 19,217 2,195.96 245,586,526 5,648,490 734,303 4,937

Berlin YouTube 17,480 2,068.41 223,388,274 4,244,377 636,689 4,135

Iconics are for clusters of size ≥ 200 (Section 3.2). SfM timings are reported on components with ≥ 400 images. Video clusters with more than 50 videos are reported.
Reported numbers are based on two passes of the dataset

the Bag-of-Iconics representation (Section 4.1). Finally,
we pick smoothly transitioning video sub-sequences
(Section 4.2) to align separately reconstructed 3D models
together (Section 4.3).

4.1 Video representation clustering
Given a collection of 3D models, we need to first identify
from video data which of those models are geospatially
adjacent. Following the intuition that spatially nearby
landmarks appear more often with each other, we cluster
the video BoI histograms to uncover the frequently co-
occurring iconics. Videos covering the same set of iconics
will have a higher similarity score (Eq. 4). If such small
groups of geospatially nearby landmarks exist, the video
BoI representation should be close to each other within
the BoI space. We adopted the mean shift clustering algo-
rithm [32] to identify such landmark groups. An empirical
value of 0.1 is used as the clustering bandwidth d. The
histogram intersection kernel (Eq. 4) is used as the weight-
ing function. As shown in Fig. 4, clustering videos in
the BoI space can successfully group them by geospatial
proximity.
Geospatially adjacent landmarks can then be identi-

fied from the clustered video histograms as common
high peaks in the histogram representations (Fig. 5). To
suppress noise, we compute the average histogram H̃ of
the descriptor clusterH = {H(v1), . . . ,H(vl)} as:

H̃ =
[
h̃(0), h̃(1), . . . , h̃(m)

]
, h̃(i) =

∑
H∈H hH(i)

|H| . (5)

The underlying landmark group corresponds to a min-
imal subset of histogram bins {c|c ∈ CH ⊆ C} that sum

up to a pre-defined threshold
∑

c∈CH h̃(c) ≥ τ . Without
loss of generality, we sort the bins of the average histogram
H̃ into descending order H ′ , where h′

(0) ≥ h′
(1) ≥

· · · ≥ h′
(m). Then we can select the minimal subset of

bins CH = {0, 1, . . . , S} such that
∑S

i=0 h
′
(i) ≥ τ , where

τ = 0.70.

4.2 Optimal video sequence selection
To align disjoint reconstructed 3D models together,
smooth and continuous camera motion trajectories are
preferred. The BoI histogram representation does not
contain temporal information, thus we need to inspect the
videos again to pick suitable video sequences.
Given a group of adjacent landmarks CH and the

corresponding set of videos {vH |H ∈ H}, we first
need to filter out invalid video sequences vH that can-
not connect the separately reconstructed 3D models.
A valid video path is a set of consecutive video seg-
ments Path(v) = {vsi, vsi+1, vsi+2, . . . , vsi+k} where the
keyframes (kf i and kf i+k , respectively) of the ending video
segments (vsi and vsi+k , respectively) have valid registra-
tions with respect to the landmark iconic image set CH.
We loosen the registration constraints on the in-between
video segments vsi+1, . . . , vsi+k−1 because of the photo
collection data sampling density decrease towards the
periphery of landmark models.
To reconstruct the camera motion trajectory Path(v) of

the video v, we uniformly re-sample the video sequence
Path(v) and obtain a frame sequence F. A good frame
sequence F(Path(v)) =[ f0, f1, . . . , fM] should exhibit
smoothness in camera motion without abrupt motion or
motion discontinuities. To pick better frame sequences,

Table 2 Processing time (in hours) of each stage of our proposed 3D model alignment algorithm

Dataset Keyframe Histogram Clustering Scoring SfM Merging Total

London YouTube 227.34 11.73 6.10 132.17 4.37 2.25 383.96

Berlin YouTube 206.84 9.12 5.37 146.84 3.10 1.12 372.39

SfM timing reported on top 30 video sub-sequences
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we use the geometric mean of the inlier ratio of the
tracked features between every consecutive frame pair in
the sequence F as the smoothing score for F :

Score(F) = M+1

√√√√
M∏

i=1
T(fi−1, fi), (6)

where T(fi1 , fi) is the ratio of tracked features between
frame fi−1 and frame fi, computed by the bi-directional
KLT tracker as in Section 3.1. The KLT tracker is re-
initialized for at frame fi for each frame pair (fi, fi+1).

4.3 Model reconstruction andmerging
Having obtained the frame sequence F and the 3D mod-
els, a simple solution to align the 3D models together
is to run structure from motion on all the registered
images belonging to 3D models and the frame sequence
F together. Such direct approach is computationally too
heavy, especially for larger models. Instead, we propose
a significantly more efficient approach: we first recon-
struct the camera motion trajectory from selected video
sequences alone, and then align the 3D models to the
camera trajectory model.
Colmap [33] is used to obtain the 3D model V from

the video frame sequence F (Section 4.2). Landmark 3D

a

b

Fig. 6 Streetview images examples. a Streetview panorama and re-sampled perspective views. b Sampled Streetview GPS locations
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models L0, L1, . . . , Ln from photo collections are obtained
as in Heinly et al. [7]. To align a landmark 3D model
Li to the camera motion trajectory V, we need to esti-
mate a similarity transformation: a rotation R ∈ R

3×3, a
translation t ∈ R

3, and a scaling factor s ∈ R.
The key to obtaining the similarity transformation lies

in the fact that frames within the camera frame sequence
F can register to both the camera trajectory model V and
the landmark model Li. Given a video frame f, let RL

i , tLi
be its rotation and translation of video frame fi w.r.t. land-
mark model L, and RV

i , tVi be its rotation and translation
against video trajectory model V. The desired similarity
transformation aligning the model L to the video camera
trajectory model V can be calculated as:

R = RV
i
T · RL

i , s =
∥∥∥cVi − cVj

∥∥∥
2∥∥∥cLi − cLj

∥∥∥
2

, t = cVi − sRcLi . (7)

where c ∈ R
3 is the camera location. Transformations

obtained from multiple video frames are averaged and
further optimized by bundle adjustment [34].

4.4 Datasets and setup
We demonstrated the effectiveness of our proposed
model alignment onmultiple crowdsourced datasets. Two
unordered Internet photo collections from Flickr covering
London and Berlin are obtained from the authors of [6]
(see Table 1 for the dataset statistics). Two crowdsourced
video collections and one manually collected video collec-
tion are then used to separately align the disjoint models.
Two Internet video collections (covering London and
Berlin respectively) are obtained from YouTube by text
and geo-location-based queries within the “travel” and
“events” video subcategory s. The crowdsourced video
collections contain great variances in video resolutions,
frame rates, bit rates, etc. We limit the maximum reso-
lution of download for YouTube videos to be 1080P for
efficient storage and processing. The Videoscapes dataset
[16] is a manually collected video dataset, covering major
landmarks in London with ground-truth GPS trajectories.
We implemented the proposed pipeline in C++ &

Python. A single computer with 192 GB memory, a 32-
core 2 GHz Intel Xeon CPU, and three nVidia Tesla K20c
GPUs, is used for our experimental evaluations. Detailed

timings can be found in Tables 1 and 2, respectively. To
the best of our knowledge, processing such large-scale
hybrid visual datasets on a single computer in a few days
is unprecedented.

4.5 Inter-model alignment results
Registration can only be achieved on 15% videos of the
Berlin video dataset and 13% videos of the London video
dataset. While [7] registered 26% images on Berlin image
dataset and 25% on London image dataset, the differ-
ent characteristics of the video dataset are the main
reason for lower registration rate on video collections.
We borrowed the iconic codebook from the image dataset
to search for video segments connecting landmarks. Con-
sidering the vast differences between photo and video
datasets, the visual content of videos cannot be fully
summarized by the iconic codebook from photo collec-
tions. Lower registration rate on video collections actually
reveals the fact that by using the photo collection code-
book, only relevant video contents are considered for our
model alignment problem.
Our proposed pipeline has smaller throughput com-

pared to state-of-the-art [7] (Table 1) because (1) we
iterate the dataset for an additional pass; and (2) we
have inferior computation capability with our hardware
platform compared to [7].
Qualitative results are presented in Figs. 11 and 12.

All results in London are reported on the crowdsourced
YouTube video dataset. We then utilize geo-registered
streetview (SV) images for a quantitative evaluation
(Fig. 6). Although many crowdsourced images contain
geo-tags, we did not utilize such information for regis-
tration in our algorithms. In addition, streetview images
have higher GPS accuracy [35]. Google streetview images
are stored as equirectangular panoramas. We re-sampled
perspective images from 12 uniformly distributed viewing
angles of each panorama. The obtained perspective
views are then registered to the 3D SfM models
(from Section 4.3) to get ground-truth inter-model
transformations.
For quantitative evaluation, the coordinate system of

one 3D landmark model is used as the reference coordi-
nate system. The similarity transformations (rotation R,
translation t, and scaling s) of other landmark models with

Table 3 Quantitative evaluations of model alignment. Euclidean distance in meters are reported for positional errors

Evaluated model London eye Westminster Abbey Tower of London Brandenburg gate
Average

Reference model Big Ben Big Ben Tower Bridge Reichastag

Orientation error (°) 6.94 5.46 4.38 8.34 6.28

Position error (m) 1.71 0.96 3.15 2.76 2.15

Scaling error (%) 3.42 4.67 9.19 2.47 4.94

Rotations are converted to axis-angle representation, and errors are reported as average angle differences in degrees. Relative errors in percentage are reported for scaling
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Table 4 Comparison of different keyframe extraction algorithms. Experiments are performed on the Videoscape dataset 4.4

Method Speed (Hz) Keyframes Iconics Clustering time (min)

Intensity 1057.2 2784 759 9.8

Tracking 301.8 1298 622 6.6

[18] 15.76 962 619 6.1

respect to the reference model is computed as Eq. (7).
As shown in Table 3, our proposed method successfully
discovered the geospatial relationships from the video col-
lections and produced accurate spatial transformations to
align separate 3D landmark models.

4.6 Discussions
4.6.1 Keyframe selection
As seen in Table 2, keyframe extraction takes the major-
ity of the video processing time. But the quality of selected
video keyframes is critical for extracting meaningful BoI
representations and controlling the keyframe collection
sizes.
Notice in Table 1 that the total number of raw frames

exceeds even the 100 million images dataset in [7]. To
make the entire pipeline feasible with limited computa-
tional resources, it is necessary to reduce redundant video
data to distinctive and representative keyframes. Though
keyframe extraction is taking a majority of the processing
time, without it later stages would suffer from intractably
high volumes of data.
To further justify our choice of KLT tracking, we

compare our GPU-based KLT tracker with two differ-
ent keyframe selection strategies. One is a fast frame
intensity based keyframe selection algorithm: where each
frame is represented as the concatenation of the inte-
grated row and column pixel intensities; frame vectors
are normalized to unit length; subsequent frame vector
is compared against the previous keyframe vector, when-
ever significant changes are detected (Euclidean distance
larger than 0.2) the current subsequent frame is selected
as a new keyframe. The other method [18] explicitly eval-
uates frame-to-frame point correspondence sets as well
as frame-to-frame epipolar geometries (homography and

fundamental matrix), thus avoiding motion and struc-
ture degeneracy to select more robust keyframes for 3D
reconstruction purposes.
As can be seen in Table 4, the appearance based

keyframe extraction algorithm is much faster, but it
produced significantly more keyframes and thus greatly
burdens the later clustering stage. The more expen-
sive keyframe selection method [18] generated fewer
keyframes but a similar number of iconics, which means
it summarized the visual dataset with fewer iconic images.
However, the superiority of its keyframe quality cannot
compensate for its huge computation overhead when seen
in the context of the overall method.

4.6.2 Histogram clustering
Our proposed method can successfully discover the
geospatial relationships from video collections and align
the corresponding 3D landmark models, as shown in
Figs. 11 and 12. However, our method empirically finds
small groups of landmarks. We contribute this to the
following reasons:

1. Many video clusters have a single major peak. Single
mode descriptors correspond to videos that describe
a single landmark. Such video clusters do not bring
extra information for model alignment tasks.

2. The smaller bandwidth parameter d used in the
mean shift clustering algorithm prefers more tightly
coupled video clusters. But greater bandwidth d is
more error-prone to noise in the BoI descriptors.
Further exploration is needed on how to select the
bandwidth d.

3. There exists a limited number of geospatially
adjacent landmarks. The farther away the landmarks

Bag-of-Iconics
Representation

Keyframes

Binary 
Vectors

Video 
Collection

Iconic 
Codebook

IT
Q

Binary
Hashing

Fig. 7 Retrieval pipeline overview
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Table 5 Statistics of video retrieval datasets

Training dataset
Video Frame Time (h)

Total Registered Total Keyframe Registered Iconics Keyframe Clustering

Augmented Videoscape 901 659 605,544 2784 2575 622 0.05 0.11

London YouTube 15,417 4691 184,189,894 4,518,792 1,402,825 97,048 179.58 4.68

Berlin YouTube 13,984 4317 179,380,784 3,395,501 1,086,560 83,262 165.47 4.30

are, the longer videos need to be to capture the
necessary trajectories. Such verbose and long videos
are generally of less interest to the general public and
more burdensome to capture, thus are harder to find
in the public domain.

5 Geometry-aware video retrieval
Given an example video, finding relevant or similar
videos that share the same geometry background or
geometric entity can be helpful for many applications:
duplicate detection, surveillance, and geo-localization, to
name a few. Our BoI representation makes it possi-
ble to retrieve geometrically similar videos in large-scale
datasets. To further scale-up the target database, we
demonstrate that through state-of-the-art binary hashing
[21], indexing, and searching techniques [22], our pro-
posed BoI representations can perform geometry-aware
video retrieval very effectively and efficiently. An overview
of the geometry-aware retrieval pipeline is shown in Fig. 7.
For searching the video database, we first follow

Section 3 to extract the iconic codebook and build the BoI
representations for all database videos. For a given query
video, we follow the same algorithm (Section 3.3) and
build the corresponding BoI vector. Finding geometrically
relevant videos is then equivalent to performing a near-
est neighbor search in the BoI space using the histogram
intersection kernel (Eq. 4) [36].
It would be challenging to index and search the BoI vec-

tor databases if the extracted codebook C contains a large
number of iconic images for a very large video collection.
Compact binary representations provide opportunities to
easily scale up the target database. We leverage one of the
state-of-the-art binary hashing techniques: iterative quan-
tization (ITQ) [21] to hash the BoI vector representation

Table 6 Speed for geometry-aware video retrieval tasks. Time is
given in milliseconds

Target dataset Size
Search space

Original BoI Binary BoI

London training 15,417 1425.18 9.82

Berlin training 13,984 1251.76 8.79

into a fixed-length binary string (128 bit in our example,
two words on modern 64-bit architectures). Geometry-
aware video retrieval is first done in the binary Hamming
space withmulti-indexed hashing [22]. Then re-ranking in
the original BoI space is performed for top 128 retrieved
results in the binary space.

5.1 Datasets and setup
We use the same hardware platform as in Section 4.4
to perform experimental evaluations for the geometry-
aware video retrieval tasks. The same datasets used in
Section 4.4 are also employed for our retrieval evaluation.
For the crowdsourced London and Berlin datasets,

no ground-truth GPS annotation is available. The
Videoscapes dataset [16], however, recorded the ground-
truth GPS trajectories for each video within the dataset.
The original Videoscapes dataset provides less than 300
hundred videos, with a total length of around 3 h.
To demonstrate the scalability of our proposed retrieval
approach, we augmented the original Videoscapes dataset
by randomly partitioning the original video sequences
into shorter but temporally overlapping video sequences.
In this way, we can increase the cardinality of the video
collections with known geometric connections.
For each of the datasets (London YouTube, Berlin

YouTube, and augmented Videoscape), we randomly split
the video collection into a disjoint 80% training dataset
and a 20% testing dataset. Please refer to Table 5 for train-
ing set statistics. We follow Section 3 to extract the code-
book and build the BoI representation for the database
videos for each training dataset.
For a given query video, each keyframe takes 30 ms to

test for occurrence in the BoI histogram, including SIFT
[29] feature extraction, visual world quantization, vocab-
ulary tree querying, and geometric verification. Detailed
retrieval speed in given in Table 6. For example, the
London YouTube training dataset contains 15,417 train-
ing videos. Our direct video retrieval in BoI space takes
less than 1.5 s after the BoI vector is obtained for the
query video. Once binary representation is obtained, sim-
ilar videos can be retrieved within 10 ms. By compressing
and indexing the original BoI vector into binary hamming
space, we can achieve significant speedup for the retrieval
tasks.
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Fig. 8 Examples of identified iconic images on YouTube video keyframes. Best view in color

5.2 Results
Identified iconic images are visualized in Fig. 8. Iconic
images from the London YouTube training dataset
demonstrated greater variety in terms of visual con-
tent. The variety in iconic views can form a better
group of bases for representing individual videos. Com-
pared to borrowing codebook from photo collections
(Section 4), directly extracting iconic codebook from
video keyframes can lead to higher registration rate.
Thirty percent of videos are registered in the London
training dataset (Table 5) using the video iconic code-
book, while only 13% of videos are registered in the
London dataset (Table 1) using the photo iconic code-
book. Being able to find a group of well-formed bases
from noisy crowdsourced data further demonstrated
the robustness and effectiveness of our proposed BoI
representation.
Qualitative retrieval results from the two YouTube

datasets are shown in Fig. 10. Although the dataset is
large and noisy, we can successfully retrieve geometrically
relevant videos. This underlines the efficiency, effective-
ness, and scalability of our proposed representation for
large-scale video retrieval tasks.
Quantitatively evaluations of the retrieval perfor-

mance of our BoI representation are performed on the

augmented Videoscapes dataset. For each query video,
training videos that lie in a 50-m radius are defined as
the ground truth. We achieve a precision of over 0.90 at
a recall rate of 0.36 with BoI vectors, and a precision of
0.85 with binary codes at the same recall rate. Detailed
precision-recall curves can be found in Fig. 9. By com-
pressing the original high-dimensional sparse BoI vectors
into compact binary descriptors, over 100× speed up can
be achieved with sacrificing 0.05 precision at 0.30 recall.
In general, our proposed Bag-of-Iconics representation
is effective for video retrieval tasks, and robust under
different distance metrics.
We further explored different options for building BoI

histograms with extracted codebooks. For example, BoI
histograms are built with a different number of simi-
lar iconic images, with/without geometric verification.
Quantitative evaluations can be found in Fig. 9. With geo-
metric verification enabled, increasing the number of the
nearest neighbors has a negligible impact on retrieval per-
formance (see 2-NN-GV and 5-NN-GV precision-recall
curves). Similar iconic images without rigid geometric
transformations are filtered out in the histogram, and
thereby removing the noise. Without geometric verifica-
tion, the iconic image retrieval error will be amplified
with an increasing number of nearest neighbors. For

a b

Fig. 9 Precision-recall curves for retrieval tasks. 2-NN-GV: BoI vectors are obtained with two nearest neighbor search followed by geometric
verification; 5-NN-GV: 5 nearest neighbor search followed by geometric verification; 2-NN, 5-NN: nearest neighbor search without geometric
verification. Geometric verification is critical for accurate retrieval. a Precison-recall for video retrieval on BoI vectors. b Precison-Recall for video
retrieval on binary BoI vectors
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Table 7 Performance evaluation for geometry-aware video
retrieval tasks

Feature SIFT-BOW BOI CNN

Precision 0.81 0.90 0.69

Recall 0.35 0.36 0.28

example, 5-NN have lower accuracy than 2-NN in both
BoI histogram and binary retrieval. Thus, geometric ver-
ification is critical for our proposed representation to
achieve high quality results.
We also compare our proposed BOI feature repre-

sentation against other feature representations for the
geometry-aware video retrieval task. Experimental com-
parisons are performed on the augmented Videoscapes
dataset. For each query video, training videos within a
50-m range are considered as ground truth.
Convolutional neural networks (CNN) have demon-

strated their successes in extracting feature represen-
tations from visual inputs. Thus we also compare
our BoI representation with CNN based features. The
ResNet-50 network pretrained on ImageNet dataset
[37] is used as feature extractor. Output from the last
fully-connected layer is used as the visual feature

representation. For a given video, keyframes are extracted
as described in Section 3.1. The convolutional feature
representation for each keyframe is obtained by feeding
the keyframe into the ResNet-50 neural network. Then,
feature vectors for all keyframes are averaged together
to get the video feature representation. We also com-
pare our BoI representation with the traditional Bag-
of-Visual-words representation. For each video, SIFT
features from all extracted keyframes are aggregated into
the Bag-of-Words histogram to build the global feature
representation.
Detailed performances can be found in Table 7. For

our novel geometry-aware video retrieval task, our pro-
posed BoI representation exceeds the traditional BoW.
Surprisingly, CNN based features do not show strong
performances. For one thing, the pre-trained network
is not fine-tuned on our video data, thus may not be
able to provide the optimal feature representation for this
task. For another, CNNs are great at high level seman-
tic visual tasks. However, our proposed geometry-aware
video retrieval task enforces low-level geometric con-
straints, which the CNN is not exposed to during its
training process. We leave as future work integrating such
geometry constraints into the end-to-end learning frame-
work of CNN models.

Fig. 10 Qualitative video retrieval results on YouTube dataset. Each row represents a query, with first column showing an example keyframe of the
query video and other columns showing keyframes of retrieved videos. Correct retrieval results highlighted in blue, incorrect in red. Best view in color
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5.3 Discussions
We have proposed a “Bag-of-Iconics” representation for
the analysis of large-scale unstructured video collec-
tions. Our results reveal the importance of geometric
verification. On the “scene” level of abstraction, the
detection of scene similarity/overlap among videos pro-
vides a shared context among visual data that is
robust to a certain class of scene dynamic content,
e.g., we can associate different events recorded in
a common setting through background co-occurrence
(see Fig. 10).
The experimental results in Section 5.2 show the effec-

tiveness of our proposed BoI representation, but also
reveal several opportunities for further improvements and
research efforts (Figs. 11 and 12).

5.3.1 Association completeness
Constructing the iconic codebook through a combination
of keyframe-based processing and our aggressive reduc-
tion of the image association space will inevitably com-
promise completeness. Going forward, we will explore the
use of recent efficiency-driven pairwise geometric verifi-
cationmethods, e.g., [38, 39], to expand the scope of image
associations within our streaming framework.

5.3.2 Spatio-temporal representation
Our implementation focuses on geometric similarity as
an association cue. However, for tasks like video semantic
classification, or action recognition, the temporal ordering
of the observation provides valuable information not cur-
rently integrated into our framework. We will explore

a b c

d e f

g

g

Fig. 11 Example of 3D model alignment. Separate 3D models (d–f), for Westminster Abbey (a), Big Ben (b), and London Eye (c) can be obtained
from image collections. Our proposed method can find video segments that links these three models together, as shown in (g, h). Best view in color
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Fig. 12 Example of 3D model alignment. Visualizations obtained from the Berlin and London YouTube dataset. Reichastag (a, c) and Brandenburg
Gate (b, d) are aligned by video trajectory (f) as shown in (d, e). Tower of London (g, i) and Tower Bridge (h, j) are aligned by the video trajectory
(m) as shown in (k, l). Best view in color

possible extensions to our current BoI representation to
incorporate temporal information.

6 Conclusions
In this paper, we tackle the problem of understanding
inter-sequence relationships within a large-scale video
datasets. To this end, we propose to represent videos as
a bag of iconic images. We develop a fully automatic and
unsupervised approach to summarize a crowdsourced
video collection by a compact set of representative iconic
images. We further demonstrate the effectiveness of our
proposed BoI representation through two novel applica-
tions: (1) retrieving geometry-aware relevant videos from

a video collection and (2) mining geospatially adjacent
landmarks and align reconstructed 3D models together
using common video motion trajectories. For future
research, we plan to apply the Bag-of-Iconic representa-
tion for new video analysis tasks.
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