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Abstract

We address a method of pedestrian segmentation in a video in a spatio-temporally consistent way. For this purpose,
given a bounding box sequence of each pedestrian obtained by a conventional pedestrian detector and tracker, we
construct a spatio-temporal graph on a video and segment each pedestrian on the basis of a well-established
graph-cut segmentation framework. More specifically, we consider three terms as an energy function for the
graph-cut segmentation: (1) a data term, (2) a spatial pairwise term, and (3) a temporal pairwise term. To maintain
better temporal consistency of segmentation even under relatively large motions, we introduce a transportation
minimization framework that provides a temporal correspondence. Moreover, we introduce the edge-sticky
superpixel to maintain the spatial consistency of object boundaries. In experiments, we demonstrate that the
proposed method improves segmentation accuracy indices, such as the average and weighted intersection of union
on TUD datasets and the PETS2009 dataset at both the instance level and semantic level.
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1 Introduction
Silhouette extraction or human body segmentation is
widely conducted as the first step in many high-level com-
puter vision tasks of video surveillance systems, such as
human tracking [1–4], human action recognition [5–8]
and gait-based identification and recognition [9–11].
In human tracking, the extracted human silhouette is
used for human full-body localization or human part
localization [1–4]. In human action recognition, studies
[5, 7, 8] have directly extracted features from a sil-
houette sequence; Chaaraoui et al. [6] used contour
points of the human silhouette for action represen-
tation. For gait-based identification and verification,
Collins et al. [9] used the silhouette for shape match-
ing; Chen et al. [2] extracted features from the spatio-
temporal silhouette for gait recognition while Liu et al.
[11] proposed the average silhouette as a feature for
recognition.
Pedestrian silhouette extraction has long been stud-

ied. This research mainly falls into three categories:
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supervised methods, unsupervised methods, and semisu-
pervised methods.
Supervised methods [12, 13] have performed well in

recent years. A typical approach of supervised pedes-
trian silhouette extraction requires a manually annotated
mask of the target in the first frame and propagates the
mask frame by frame. An automatic surveillance system,
however, cannot adopt manual annotation.
Unsupervised methods, including methods based on

background subtraction (e.g., [14, 15]) and motion
segmentation (e.g., [16–19]), are the most popular
approaches because they do not require manual annota-
tion. Methods based on background subtraction model
the background using statistical models (e.g., a Gaus-
sian mixture model) and extract the silhouettes of mov-
ing targets as the foreground. However, methods based
on background subtraction only classify the moving tar-
get and background and do not realize instance-level
silhouette extraction. Multi-label motion segmentation
assigns human labels to sparse points or pixels according
to motion information (e.g., optical flow), allowing tar-
gets with different motion patterns to be discriminated.
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However, because of the lack of object detection infor-
mation, motion segmentation still cannot discriminate
pedestrians with the same motion pattern (e.g., pedestri-
ans walking in the same direction side by side) and may
sometimes assign different labels to human parts with dif-
ferent motion patterns. Motion segmentation therefore
suffers from under-segmentation and over-segmentation.
Semisupervised methods that do not require a manu-

ally annotated silhouette at the first frame but a bound-
ing box trajectory are more suitable for pedestrian sil-
houette extraction by an automatic surveillance system,
because the trajectory of the bounding box can be auto-
matically extracted using recently advanced approaches
of object detection [20–22] and multiple-object tracking
[23–25]. To the best of our knowledge, semisupervised
methods use optical flow to maintain temporal consis-
tency (e.g., [26]). Because optical flow sometimes fails in
handling large displacement, optical-flow-based semisu-
pervised approaches often suffer segmentation errors for
human parts having large displacement (e.g., a pedes-
trian’s leg and arm). Moreover, a conditional random field
(CRF) framework that uses a color-based Gaussian mix-
ture model (GMM) for the background data term and a
simple linear iterative clustering (SLIC) superpixel [27]
as nodes in the CRF has been adopted [26]. However,
color information is not enough for modeling a nonhu-
man region (e.g., when a pedestrian and the background
have similar colors) and the SLIC superpixel sometimes
cannot preserve the object boundary well, which is vital
for construction of the spatial pairwise term.
We therefore proposed a semisupervised method that

not only handles large displacement but also better pre-
serves the pedestrian’s boundary. Given the pedestrian
bounding box tracklets, we construct a conditional ran-
dom field for silhouette extraction that involves a data
term, spatial pairwise term, and temporal pairwise term.
The contributions of this paper are as follows.

• Optimal transport (OT)-based temporal consistency.
In contrast to most related work, we adopt OT to
maintain temporal consistency. The lack of capacity
in terms of handling large displacement is a main
drawback of optical flow. Although there are
methods that improve the handling of large
displacement (e.g., the pyramid strategy [28]), the
motion of leg and arm parts still cannot be described
correctly. Compared with conventional optical flows,
the proposed method successfully handles large
displacement between two frames thanks to the
global optimal property of the OT framework. As far
as we know, the OT framework is usually used to
measure the difference between two discrete
distributions (e.g., a dissimilarity measure between
two color histograms), which is also known as the

earth mover’s distance. The proposed method does
not use the final outcome of the OT framework (i.e.,
a distance) but the "process" of the OT framework
(i.e., flow (or correspondence) between two frames),
which is the primal novelty of the proposed method.

• Combination of the edge-sticky superpixel (ESS) and
OT. The time complexity of the OT increases as the
dimension of the discrete distributions (e.g., the
number of bins of histograms) increases, and direct
application of the OT to pixel-wise image
representation is computationally prohibited. We
therefore need to appropriately transform the input
image into a discrete distribution with a relatively low
dimension. Superpixel segmentation is one such
effective way to represent an image as a discrete
distribution while keeping information, that is,
compressing redundancy. More specifically, we
regard an input image as a histogram, where the
number of superpixels is the number of bins, a gravity
center of a superpixel is a representative value of a
bin, and a number of pixels (area) of a superpixel is
the frequency (or vote) for a bin. Moreover,
superpixel segmentation needs to well preserve object
boundaries for our final goal, that is, pedestrian
silhouette extraction. State-of-the-art superpixel
segmentation methods (e.g., the SLIC superpixel [27]
and superpixels extracted via energy-driven sampling
(SEEDS) superpixel [29]) provide a balance between
appearance and shape regularity, and usually perform
well in computer vision tasks. However, this balance
between appearance and shape regularity does not
always guarantee that the object boundary is well
preserved. Our ultimate target is to extract
pedestrians’ silhouettes, and we thus need to adopt a
superpixel segmentation method that better
preserves object boundaries. We therefore adopt the
ESS, which introduces edge detection information
explicitly into the process of superpixel generation.
As a result, the object boundary can be preserved well
while balancing the appearance and shape regularity.

• Performance improvement on segmentation
benchmarks. We demonstrate that the proposed
method improves the performance of pedestrian
silhouette extraction at both the instance level and
semantic level on public datasets compared with
state-of-the-art methods.

2 Related work
The silhouette extraction or human segmentation of mul-
tiple pedestrians has been addressed in the literature [12,
13, 16, 26, 30–32]. We categorize typical approaches as
follows:

• Supervised methods. Supervised methods perform
well in video segmentation. Themost popular frame-
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work [12, 13] is to manually annotate the target’s
mask in the first frame and propagate the target
mask to other frames. In [13], a two-branch approach
was proposed whereby the features from ResNet-
101 [33] and FlowNet [34] were combined for joint
object segmentation and optical flow estimation. In
[12], a method of frame-by-frame object segmenta-
tion was implemented by learning the appearance
of the annotated object. However, because the mask
annotation has a manual burden, it is difficult to
apply supervised methods to pedestrian silhouette
extraction in an automatic surveillance system.

• Unsupervised methods. Unsupervised methods
require no manual annotation and hence can be
applied directly to an automatic surveillance system.
Most unsupervised methods are based on motion
information. The temporal superpixel [35] involves
optical flow into a superpixel segmentation frame-
work to realize a temporally consistent superpixel.
Ochs et al. [16] adopted a two-step approach:
generate sparse segments by clustering long-term
trajectories and then obtain dense segments accord-
ing to color. However, the temporal superpixel is a
superpixel segmentation and thus requires a manual
annotator that specifies the pedestrian’s superpixel,
which is again not possible for an automatic surveil-
lance system. Ochs’s approach [16] is also prone
to under-segmentation because multiple pedestri-
ans walking in the same direction are likely to be
segmented into an identical segment.

• Semisupervised methods. Compared with supervised
and unsupervised methods, semisupervised meth-
ods that only require a bounding box annotation
are more suitable for silhouette extraction by a
real-world surveillance system. Milan [26] exploited
a joint tracking and segmentation method that
first applies superpixel segmentation and multiple-
pedestrian tracking. A CRF is then constructed and
all superpixels are assigned with the labels of pedes-
trian trajectories. Because optical flow is used in
the construction of the CRF, Milan’s approach some-
times fails for pedestrian’s legs, for which there is
large spatial displacement.

• Pedestrian segmentation methods for a single frame.
In recent years, great strides have been made in cel-
lular neural network (CNN)-based image semantic
segmentation and instance segmentation. In [31], a
multipath refinement network was presented where
CNN features with multiple resolutions are fused so
that semantic features can be refined using lower-
level features. In [32], an object detection net-
work [20] is concatenated by a fully convectional
network [36] so that object detection and instance-
level segmentation can be achieved jointly. Single-

frame segmentation methods can therefore be easily
extended to pedestrian silhouette extraction in video
using bounding box trajectories.

3 Proposedmethod
3.1 Problem setting
The present study presents a method of extracting silhou-
ettes of multiple pedestrians from a video. We assume
that the cameras are static and the bounding box tra-
jectories are given by well-established detectors [20] and
trackers [23].

3.2 Framework
We adopt a two-step framework that consists of super-
pixel segmentation and superpixel-wise labeling. The
whole framework is shown in Fig. 1.
Superpixel segmentation. Given an input image

sequence, superpixel segmentation is first applied frame
by frame to reduce the computational cost. We adopt the
ESS, which better preserves object boundaries.
Superpixel-wise labeling. Given the superpixel segmen-

tation result and pedestrian trajectories (i.e., a bounding
box sequence for a pedestrian), each superpixel is assigned
with a trajectory label (i.e., a pedestrian label) in this
step, resulting in instance-level segmentation as shown in
Fig. 1f.
The label assignment problem has been well studied for

decades and recent progress expanded its application area
to many computer vision tasks. As an example, Wu [37]
proposed an adaptive label assignment method to han-
dle the “one example human re-identification” problem
where there is only one example available for each human
identity, that is, the labeled data. The adaptive label assign-
ment method can both select a set of candidates from the
unlabeled data and assign labels of the candidates using
a nearest neighbors (NN) classifier in the feature space
extracted by the CNN model.
However, in the present work, we cannot generate a set

of "labeled data" as in [37] owing to the different prob-
lem settings. Furthermore, spatio-temporal consistency
is strongly required in the present work, and pairwise
features that maintain spatio-temporal consistency (e.g.,
edge-based features) can only be extracted in a pairwise
manner instead of using the independently extracted fea-
tures. As a result, the approach in [37] cannot be applied
directly in the superpixel-wise labeling step of the present
work.
To better handle the features extracted in a pair-

wise manner, we adopt the well-established CRF for
superpixel-wise labeling. The label assignment problem is
then formulated as a CRF problem and solved using the
graph-cut with α-expansion algorithm.
Details are discussed in the following subsections.
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Fig. 1 Framework of the proposed method. a Given input images. b Superpixel segmentation followed by the construction of a CRF consisting of c
a data term, d spatial pairwise term, and e temporal pairwise term. Application of the graph-cut with α-expansion to get f the segmentation result

3.3 ESS
The superpixel is a popular technology used to reduce the
redundancy of an image and is employed in many com-
puter vision applications. We use the superpixel because
not only does it reduce the computational complexity but
also it preserves object boundaries.
State-of-the-art approaches (e.g., the SEEDS superpixel

[29] and SLIC superpixel [27] approaches) balance the
spatial and appearance consistency. However, such bal-
ance sometimes affects the capacity to preserve object
boundaries. It is therefore necessary to involve edge infor-
mation when there is a strong need to preserve the object
boundary. In this research, we adopt the ESS, which is an
extension of Pitor’s work [38]. Because there is no cor-
responding publication1, we provide a simple illustration
of the ESS. We describe the details of the ESS along with
Fig. 2 in the following paragraphs.

1Code for the ESS is released at https://github.com/pdollar/edges.

We denote a set of pixels in frame t by P t = {pi|i ∈
Lt
P}, where Lt

P is a set of the indices of pixels in frame t
(i.e., the number of elements of Lt

P is the image size), t ∈
{1, 2, ...,T}, where T is the total frame number and pi is the
i-th pixel. Moreover, a set of superpixel indices in frame
t is denoted Lt

SP. The superpixel segmentation in frame t
can then be formulated as

Xt
SP : Lt

P → Lt
SP, (1)

where each pixel is assigned with the label of a super pixel
(i.e., the index of a superpixel).
We first initialize each pixel as a superpixel; i.e.,Xt

SP(i) =
i;∀i ∈ Lt

P . Then, for each pixel (e.g., the i-th pixel), we
calculate the cost c(i, l) of assigning a neighboring super-
pixel’s label l to the i-th pixel considering the spatial
proximity, appearance similarity, edge consistency, and
superpixel size as

https://github.com/pdollar/edges
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Fig. 2 Framework of the ESS. a Each pixel in the input image (e.g., a 5 × 5 grayscale image) initialized as a superpixel, where a black number is the
label of a superpixel. b Each pixel relabeled under an energy minimization framework. In each iteration, we scan and update the labels of all pixels.
For each pixel (yellow), the label assignment costs of its four-connected neighbors (blue) are calculated as shown by red numbers, and each pixel’s
label is updated with the lowest-cost neighbor’s label. The iteration continues until there is no change in each pixel’s label. Finally, the superpixel
segmentation result is obtained as in c

c(i, l) = α‖vloc(i) − μloc(l)‖2
+ (1 − α)(1 − β)‖vapp(i) − μapp(l)‖2

+ γα

Al
+ (1 − α)βcedge(i, l), (2)

where α, β , and γ are hyperparameters. The location and
appearance vector for the i-th pixel are denoted vloc(i) and
vapp(i), while the mean location and appearance vector for
the l-th superpixel are denoted μloc(l) and μapp(l). More-
over, cedge is the edge cost and Al is the size of the l-th
superpixel.
The first and second terms of Eq. (2) maintain the spa-

tial consistency of the superpixel, while the third term
controls the size of the superpixel.
The last term helps to preserve the object boundary by

involving the edge probability. The edge probability is cal-
culated using structured edge detection (SED) [38]. SED
is briefly introduced together with Fig. 3 below.
SED firstly separates an input image into a set of image

patches. A pre-trained random forest is then applied to
the set of image patches to achieve a set of binary edge
masks as shown in Fig. 3b. Finally, the set of edge masks
are aggregated to generate the edge probability (i.e., the

edge detection result) as shown in Fig. 3c. We refer the
reader to [37] for more details.
The edge probability of the i-th pixel in frame t is

denoted ptedge(i) and the edge cost function cedge(i, l) is
then defined as

cedge(i, l) =
⎧
⎨

⎩

0
{
j|j ∈ n4(i),Xt

SP(j) �= l
}=∅

min
j∈n4(i),Xt

SP(j) �=l
−ptedge(j) otherwise ,

(3)

where the set of four-connected neighbors of the i-th pixel
is denoted n4(i) and the set of corresponding superpixel
labels is l4(i) = {

Xt
SP(j)|j ∈ n4(i)

}
. Details of the edge cost

function will be described along with Fig. 4.
Figure 4 shows that the i-th pixel’s four-connected

neighbors are j1 (whose superpixel label is l1) and j2, j3,
and j4 (whose superpixel labels are l2). The edge prob-
ability is represented in pseudo-color, where the edge
probability for a red pixel is 0.9 while that for a blue
pixel is 0.1, i.e., there is an edge on the left side of the i-
th pixel. According to Eq. 3, cedge(i, l1) = − 0.1 and
cedge(i, l2) = − 0.9, it is more difficult to assign the label
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Fig. 3 Framework of the proposed method. a Given input images and two samples of image patches (blue and green edged). b Binary edge masks
obtained using a pre-trained random forest. c Edge detection results (i.e., edge probability map) obtained by aggregating all edge masks

l1 than the label l2 to the i-th pixel. As a result, the edge
cost function helps preserve the object boundary.
We repeat this process until Xt

SP stops changing. An
example of an ESS result is shown in Fig. 5.We see that the
object boundaries (e.g., boundaries between a pedestrian
and background) are well preserved.
After obtaining the superpixels for each frame inde-

pendently, the set of all superpixel labels is defined as
LSP = ⋃T

t=1 Lt
SP. Moreover, we denote the set of all

pixels as LP = ⋃T
t=1 Lt

P. For simplicity, the superpixel
segmentation for all frames is defined as

XSP : LP → LSP. (4)

3.4 Superpixel-wise labeling
Given superpixel segmentation results and a set of bound-
ing box sequences for nTR pedestrians TR = {tri|i ∈ LTR},
where tri is the bounding box trajectory for the i-th
pedestrian, we consider mapping the superpixel labelsLSP
into one of the pedestrian labels LTR = {

lTR1 , ..., lTRnTR
}
,

where lTRm is the m-th pedestrian’s label, or a background

label lTRBG. For simplicity, we denote all labels by L̂TR =
LTR

⋃ {
lTRBG

}
. The problem of mapping from superpix-

els’ labels LSP to L̂TR (i.e., the superpixel-wise labeling
problem) can be formulated as

XCRF : LSP → L̂TR. (5)

We then formulate the problem of optimizing XCRF as a
multi-label CRF problem:

X∗
CRF = argmin

XCRF
E(XCRF), (6)

where the energy function E(XCRF) is defined as

E(XCRF) =
∑

p∈LSP

EData (p,XCRF(p))

+ ωS
∑

(p,q)∈NS

ES (p, q,XCRF(p),XCRF(q))

+ ωT
∑

(p,q)∈NT

ET (p, q,XCRF(p),XCRF(q)) . (7)

Fig. 4 Example of the edge cost function. a Input image of the frame t. b Clipping around the i-th pixel. Edge probability ptedge = 0.9 on the left side

(as represented by red) and ptedge = 0.9 in the middle and on the right side (as represented by blue). c Edge cost of assigning the label l1 to the i-th
pixel cedge(i, l1) = −0.1 while cedge(i, l2) = −0.9; therefore, l2 is more likely to be assigned to the i-th pixel
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Fig. 5 Example of the ESS. a Input image. b Edge probability map (represented by pseudo-color). c ESS result. The pedestrian’s boundary is well
preserved by the ESS

Here, the first term is the data term while the second and
third terms are respectively spatial and temporal pairwise
terms. ωS and ωT are respectively the weights of spatial
and temporal pairwise terms. The definitions of NS, NT,
EData, ES, and ET are explained in the following sections.
The multi-label CRF problem can then be solved using

the graph-cut with α-expansion algorithm [39], which is
widely used for CRF inference. The algorithm iterates
each possible label (i.e., the label α in a given CRF), and in
each iteration, the algorithm segments the α and the non-
α components with the graph-cut. The energy function of
the CRF in this work contains spatial and temporal pair-
wise terms, and the graph-cut with α-expansion algorithm
is thus adopted in a spatio-temporally consistent way.

3.4.1 Data term
The data term defined as

∑

p∈LSP

EData (p,XCRF(p)) (8)

contains two components, namely a pedestrian
term EData

(
p,XCRF(p) �= lTRBG

)
and background term

EData
(
p,XCRF(p) = lTRBG

)
for an arbitrary superpixel p.

We use RefineNet [31], a CNN-based semantic seg-
mentation method, for the background term. Given an

input image, RefineNet predicts the pixel-wise probabil-
ity distribution of a set of object classes. In this work,
we adopt a pre-trained model on the Cityscapes dataset
[40] using Residual Net (ResNet) [33], which contains
20 object classes. We extract the probability of the label
"person" in the input image denoted pHm(i) for the i-th
pixel. The pixel-wise human score of the i-th pixel is then
defined as

h
′
Hm(i) = −log (1 − pHm(i)) . (9)

The superpixel-wise human score of the p-th super-
pixel is defined as the mean pixel-wise human score of
the pixels inside the p-th superpixel, which is denoted
hHm(p). An example of the pixel-wise and superpixel-wise
human score map is shown in Fig. 6. It is clear that the
superpixel-wise human score map can be directly used as
the background data term:

EData
(
p,XCRF(p) = lTRBG

)
= hHm(p). (10)

We subsequently sample and train a GMM for multi-
ple pedestrians to define the pedestrian term. We denote
a set of pixels belonging to the k-th superpixel as uk =
{i|XSP(i) = k} and pixels inside the bounding box trajec-
tory of the i-th pedestrian ti as Ui. If the k-th superpixel
overlaps with the bounding box sequence of the i-th

Fig. 6 Example of the background term. a Input image. b Human score map from RefineNet. c Background term
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Fig. 7 Example of the pedestrian term. a Input image and pedestrian’s bounding box. b Pedestrian term of the pedestrian inside the bounding box.
Outside the bounding box, the pedestrian term is set as a sufficiently large constant

pedestrian ti (i.e., uk
⋂

Ui �= ∅), it is sampled for the GMM
training of the i-th pedestrian. A superpixel may some-
times overlap with multiple trajectories and we thus adopt
a winner-takes-all strategy by which the pedestrian closest
to the camera (i.e., the pedestrian with the lowest bound
of the bounding box) takes the superpixel.
After the superpixel sampling, we train the GMM for

each trajectory according to the mean color of the super-
pixel. θi denotes the GMM parameters of the i-th pedes-
trian. Moreover, we hypothesize that all superpixels out-
side the bounding box ti are hard to be assigned with
pedestrian label lTRi ; therefore, the pedestrian term for
those superpixels is set with a sufficiently large constant.
Finally, the pedestrian term is defined as

EData
(
p,XCRF(p) = lTRi

)
=

⎧
⎨

⎩

C up ∪ Ui = ∅
−log

(
pGMM

(
μapp(p); θi

))
otherwise

,

(11)

where C is a sufficiently large constant and
pGMM

(
μapp(p); θi

)
is the probability density of the mean

appearance μapp(p) of the p-th superpixel for the i-th

pedestrian. An example of the pedestrian term is shown
in Fig. 7

3.4.2 Spatial pairwise term
The spatial pairwise term

∑

(p,q)∈NS

ES (p, q,XCRF(p)XCRF(q)) (12)

is used to maintain the spatial consistency of XCRF. A set
of spatial neighborsNS is first defined as

NS = {
(p, q)|p ∈ LSP, q ∈ LSP, connS(p, q) = 1

}
,
(13)

where connS(p, q) is the spatial connectivity function and
is defined as

connS(p, q) =
⎧
⎨

⎩

1 ∃i, j, t;Xt
SP(i) = p,Xt

SP(j)=q, i, j are four-connected neighbors

0 otherwise
.

(14)

We then use the color and edge probability to formulate
the spatial pairwise energy function ES.

Fig. 8 Example of color-based pairwise energy. a Input image. b Color-based pairwise energy. If the colors between pedestrians or between a
pedestrian and the background are similar, the color-based pairwise energy fails to preserve the object’s boundary; e.g., the pedestrian’s boundary
inside the white bounding box in b
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Fig. 9 Example of edge-based pairwise energy. a Input image. b Edge-based spatial pairwise energy. The pedestrian’s boundary in the bounding
box in b is better preserved than the same region in Fig. 8

A color-based pairwise energy function is defined as

EColorS (p, q,XCRF(p),XCRF(q))

=
{
0 XCRF(p) = XCRF(q)
exp

(
−λ‖μapp(p) − μapp(q)‖2

)
otherwise

,
(15)

and following previous work [41], a parameter λ is subse-
quently defined as

λ = 2
|NS|

∑

(p,q)∈NS

‖μapp(p) − μapp(q)‖2 (16)

to adapt to high and low color contrast. An example of
color-based pairwise energy is shown in Fig. 8.
The color-based pairwise energy function may some-

times fail to maintain spatial consistency when the colors
of different pedestrians or a pedestrian and the back-
ground are similar as shown in the white bounding box in
Fig. 8. We therefore further include the edge probability in
the spatial pairwise energy function.

We denote by pedge(j) the edge probability at the j-th
pixel. An edge-based pairwise energy function is subse-
quently defined as

EEdgeS
(
p, q,XCRF(p),XCRF(q)

) =
⎧
⎨

⎩

0 XCRF(p) = XCRF(q)

< 1 − pedge(j) >p, q otherwise
,

(17)

where p, q ∈ LSP and < . >p, q denote the expectation
over the pixels on the boundary between two spatially
neighboring superpixels p and q. An example of the edge-
based pairwise energy function is shown in Fig. 9. The
boundary of the pedestrian inside the white bounding box
in Fig. 9 is better preserved than that in Fig. 8.
Finally, the spatial pairwise energy is defined as the

weighted sum of color-based and edge-based pairwise
energy:

ES (p, q,XCRF(p),XCRF(q)) = (1 − ωe)EColorS (p, q,XCRF(p),XCRF(q))

+ ωeE
Edge
S (p, q,XCRF(p),XCRF(q)) ,

(18)

where ωe is a hyperparameter that controls the weight of
edge-based spatial pairwise energy.

Fig. 10 Example of OT-based temporal connectivity. aManually selected pedestrian’s superpixel in frame t. b OT-based temporal connected
superpixels in frame t + 1
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3.4.3 OT-based temporal pairwise term
A temporal pairwise term defined as

∑

(p,q)∈NT

ET (p, q,XCRF(p),XCRF(q)) (19)

is introduced for the purpose of maintaining the tempo-
ral consistency of superpixel-wise labeling. NT is a set of
temporal neighbors defined as

NT = {
(p, q)|p ∈ LSP, q ∈ LSP, connT(p, q) = 1

}
,
(20)

where connT is the temporal connectivity function.
Different from spatial connectivity, which can be easily

defined according to the pixel lattice structure, the tempo-
ral connectivity must involve object motion information.
To the best of our knowledge, optical flow is the most
popular motion information used to define temporal con-
nectivity. However, optical flow usually fails to handle the
large displacement that often occurs for the pedestrian
leg and arm. We therefore introduce OT-based temporal
connectivity for better motion estimation.
The OT distance, also known as the earth mover’s dis-

tance, is a useful distance with which to compare two
probability distributions. The OT problem is described as
follows.
Given two probability distributions r = [r1, ..., rm]T and

c = [c1, ..., cn]T and a cost matrix M ∈ R
m×n+ , the OT

problem is to find a transportation matrix P∗ such that

P∗ = arg min
P∈P(r,c)

〈P,M〉F, (21)

where 〈·, ·〉F denotes the Frobenius dot product. P(r, c) ={
P ∈ R

m×n+ |P1n = r,PT1m = c
}
, where 1m and 1n are m-

and n-dimensional vectors of ones.
In this study, we formulate motion estimation as an

OT problem. We denote superpixel labels in frame t by
Lt
SP =

{
lt1, ..., l

t
|Lt

SP |
}
and then define a superpixel size vec-

tor in frame t as Ât =
[
At
1, ...A

t
|Lt

SP |
]
, where At

i is the
size of the lti -th superpixel. The normalized size vector is
then defined as At = Ât

/|Lt
P|. Because ||At|| = 1 and

∀i ∈ {
1, ..., |Lt

SP|
}
,At(i) ≥ 0, At is a probability distri-

bution. We therefore treat the normalized size vector in
two consecutive frames At and At+1 as the input of an OT
problem.
Moreover, the cost matrix between frames t and t + 1 is

defined as

Mt,t+1 =
{
m(i, j)|1 ≤ i ≤ |Lt

SP|, 1 ≤ j ≤ |Lt+1
SP |

}
, (22)

wherem(i, j) is defined as

m(i, j) = ‖μloc(lti ) − μloc

(
lt+1
j

)
‖2

+ ηapp‖μapp(lti ) − μapp

(
lt+1
j

)
‖2

+ ηHm
(
hHm(lti ) − hHm

(
lt+1
j

))2
. (23)

The first item of m(i, j) encourages transportation
between spatially nearer superpixels while the second
term encourages transportation between superpixels that
appear similar. Furthermore, we include the third term
to encourage transportation between superpixels in the
pedestrian region.
The OT between frames t and t + 1 is defined as

P∗
t,t+1 = arg min

P∈P(At ,At+1)
〈P,Mt,t+1〉F. (24)

Subsequently, the temporal connectivity is defined as

connT(p, q) =
{
1 ∃i, j, t; p = lti , q = lt+1

j ,P∗
t,t+1(i, j) ≥ thtemp

0 otherwise
, (25)

where thtemp is the threshold of temporal connectivity,
lti ∈ Lt

SP and lt+1
j ∈ Lt+1

SP . An example of OT-based
temporal connectivity is shown in Fig. 10. In Fig. 10a,
we manually select the superpixels belonging to a pedes-
trian in frame t. All the temporally connected superpixels
are shown in Fig. 10b. The temporal consistency is well
preserved by the OT-based temporal connectivity.
Finally, the temporal pairwise energy is defined as

ET (p, q,XCRF(p),XCRF(q))

=
{
0 XCRF(p) = XCRF(q)
exp (−λ‖μapp(p) − μapp(q)‖2) otherwise

,
(26)

where the definition of λ is the same as in Eq. (16).

4 Experiments
4.1 Experimental setting
4.1.1 Datasets
We test our proposed method on four publicly available
image sequences: TUD-Stadtmitte, TUD-Campus, TUD-
Crossing and PETS2009 S2L1. Each sequence contains
a long-term occlusion that makes segmentation highly
challenging. Furthermore, TUD-Stadtmitte and TUD-
Campus present the challenges of low contrast and similar
clothing.
We use manually annotated pedestrian bounding box

trajectories for each dataset when we test the proposed
method as well as the other baseline methods. We also
annotate ground-truth pedestrian silhouettes (instance
segmentation) for the evaluation of pedestrian silhouette
extraction.
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4.1.2 Evaluationmetrics
For the instance-level evaluation, we adopt mean and
weighted intersections over union (M.IoU and W .IoU) to
evaluate experimental results. M.IoU is a measure of the
instance-wise IoU for each ground-truth instance aver-
aged over all frames whileW .IoU further weights the sizes
of segments.
For simplicity, we denote the mapping from the pixel

to the pedestrian’s label as the composition of superpixel
segmentation and superpixel-wise labeling:

X = XSP · XCRF. (27)

The set of pixels assigned with pedestrian’s label i (i.e.,
the mask-type result of pedestrian i) is then denoted yi =
{p|X(p) = i}. Correspondingly, the ground truth set of the
pixel of pedestrian i is y∗

i .M.IoU andW .IoU are defined as

M.IoU = 1
nTR

nTR∑

i=1
IoU(yi, y∗

i ), (28)

W .IoU = wi

nTR∑

i=1
IoU(yi, y∗

i ), (29)

wi = |y∗
i |∑nTR

i=1 |y∗
i |
, (30)

where nTR is the number of pedestrian trajectories.
For the semantic-level evaluation, we use the pedes-

trian IoU (P.IoU) to illustrate that the proposed method
improves the semantic-level segmentation performance as

P.IoU = IoU
(nTR⋃

i=1
yi,

nTR⋃

i=1
y∗
i

)

. (31)

Furthermore, we compute IoUs along the boundary
regions to verity that the object boundaries are well pre-
served as suggested. For this purpose, we define a bound-
ary region of a pedestrian silhouette as a subtracted region
between a dilated region and an eroded region (see Fig. 12
for examples) and then define the IoU for the bound-
ary region.More specifically, for instance-level evaluation,
given the i-th pedestrian region yi, we compute the dilated
region yDii and also the eroded region yEri and then com-
pute the boundary region yBi as yBi = yDii \yEri .We similarly
define the boundary region yB∗

i of the ground-truth region
yB∗
i for the i-th pedestrian. We then define the mean IoU
along the boundary regions (denotedM.IoUB) as

M.IoUB = 1
nTR

nTR∑

i=1
IoU

(
yBi , yB∗

i
)
, (32)

where nTR is the number of pedestrian trajectories. For
semantic-level evaluation, we similarly define the pedes-
trian IoU for the boundary region (denoted P.IoUB) as

Table 1 Component comparisonon TUD-Campus

M. IoU [%] W. IoU [%] M. IoUB [%] Time [min]

SLIC + OT 46.22 77.55 15.26 8.5

ESS + optical flow 44.41 77.09 14.79 11.4

ESS + OT (Proposed) 48.08 77.89 16.85 9.6

The best performance data were italicized.

P.IoUB = IoU
(nTR⋃

i=1
yB∗
i ,

nTR⋃

i=1
yB∗
i

)

. (33)

Finally, we adopt the computational time as an eval-
uation metric with which to quantitatively analyze the
efficiency of the proposed method.

4.1.3 Baselinemethods
For instance-level segmentation, we adopt the methods of
Milan et al. [26], He et al. [32] and Ochs et al. [16] as base-
line methods. For fair comparison, we modify the baseline
methods as follows.
Milan’s method generates an overcomplete set of tra-

jectory hypotheses and then assigns superpixels to trajec-
tories. We substitute the trajectory hypothesis with the

Table 2 Instance-level results

TUD-Stadtmitte

M. IoU [%] W. IoU [%] M. IoUB [%] Time [min]

Ochs’s 13.19 25.96 3.39 1255

Milan’s 50.97 44.80 20.70 209

He’s 70.36 79.21 20.23 0.5

Proposed 57.48 81.12 20.44 17.7

TUD-Campus

M. IoU [%] W. IoU [%] M. IoUB [%] Time [min]

Ochs’s 15.08 34.87 2.85 500

Milan’s 51.38 49.29 14.27 83

He’s 63.92 71.54 13.04 0.2

Proposed 48.08 77.89 16.85 9.6

TUD-Crossing

M. IoU [%] W. IoU [%] M. IoUB [%] Time [min]

Ochs’s 6.5 26.65 1.50 1512

Milan’s 14.30 22.87 5.89 240

He’s 38.00 56.17 10.08 0.65

Proposed 30.83 64.18 13.54 20.5

PETS2009

M. IoU [%] W. IoU [%] M. IoUB [%] Time [min]

Ochs’s 14.41 29.54 5.40 4355

Milan’s 33.17 34.39 2.24 870

He’s 79.25 85.61 42.11 2.1

Proposed 68.20 80.61 37.75 118

The best performance data were italicized.
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Fig. 11 Instance-level mask-type result

Fig. 12 Instance-level edge-type result
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trajectory ground truth and eliminate the update of the
trajectory.
He’s method and Ochs’s method have different pedes-

trian labeling schemes and thus need to be relabeled.
We use a greedy assignment method by which, from
the largest ground-truth segments to the smallest, we
assign label i of trajectory tri to the segment with the
highest IoU with y∗

i . Moreover, because He’s method
generates multi-category instance-level segmentation, we
apply the greedy assignment to both human segments
and bag segments for the reason that the ground
truth of the pedestrian contains both human and bag
regions.
We adopt Lin’s method (i.e., RefineNet [31]) as a base-

line method for the semantic-level segmentation. We use
a pre-trained model on the Cityscapes dataset [40] whose
output contains 20 labels. We focus only on the quality
of the pedestrian silhouette and thus convert the original
RefineNet output into a binary mask that only contains
the "human" label and “non-human” label. An exam-
ple of the binary mask is shown in the second column
of Fig. 15.

4.1.4 Implementation details
The pedestrian bounding box trajectories used in the
experiment are manual annotations. For the ESS, we set
α = 0.7 and β = 0.7, and to keep the average size of
superpixels the same, we set γ = 545 for TUD-Stadtmitte,
γ = 560 for TUD-Campus, γ = 475 for TUD-Crossing
and γ = 300 for PETS2009; i.e., there are approximately
2000 superpixels per frame for TUD datasets and 2850 per
frame for PETS2009.
Thresholds thHm and thtemp are set as 0.5. In the spatial

pairwise term, ωe is set as 300 while for CRF, ωS is set as 8
and ωT is set as 12. Finally, to handle an arbitrary length of
frames, we use a batch process that sets the batch length
as 20 frames.
Both instance-level and semantic-level evaluations are

conducted on a personal computer with an Intel I7 CPU,
64 GB memory and a NVIDIA GTX 1080Ti GPU. We
further address the use of the GPU for each method as
follows.
For Ochs’s method and Milan’s method, GPUs are not

used in the computation because no GPU version of codes
was provided. For He’s method, the experiments are con-
ducted using GPUs. For the proposedmethod, we only use
a GPU for the RefineNet-based background term and not
other parts.

4.2 Component comparison
4.2.1 Superpixel
To demonstrate the merits of the ESS, we run a compo-
nent comparison experiment in which the SLIC super-
pixel [27] is used in a baseline method. We tune the

Fig. 13 Instance-level mask-type result for large pedestrians

number of SLIC superpixels to be the same as the num-
ber of ESSs. The experimental results presented in Table 1
show that the ESS outperforms the SLIC superpixel.

4.2.2 Temporal pairwise term
We run another component comparison experiment to
demonstrate the merits of the OT-based temporal pair-
wise term compared with the optical-flow-based temporal
pairwise term. We follow Liu’s work [42] for the optical-
flow calculation. We then define an optical-flow-based
connectivity function connflow(p, q) with which to substi-
tute connT(p, q).
We denote the average motion vector of superpixel p in

frame t asμflow(p), where p ∈ Lt
SP and the integral round-

ing of the vector is
[
μflow(p)

]
with [ ·] being the integral

rounding function. The set of pixel location vectors of the
p-th superpixel is Vp = {

vloc(j)|XSP(j) = p
}
, and the cor-

responding locations in frame t+1 obtained via
[
μflow(p)

]

are denoted V̂p = {
vloc(j) + [

μflow(p)
] |XSP(j) = p

}
.

Moreover, denoting by q ∈ Lt+1
SP a superpixel whose pixel

location vector set is Vq, the optical-flow-based temporal
connectivity function is then defined as

connflow(p, q) =
{
1 |Vp

⋃
Vq|/|Lt

SP| ≥ thtemp

0 otherwise
. (34)

Fig. 14 Instance-level mask-type result for small pedestrians
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Fig. 15 Examples of failure cases

A set of optical-flow-based temporal neighbors is then
defined as

Nflow = {
(p, q)|p ∈ LSP, q ∈ LSP, connflow(p, q) = 1

}
.

(35)

Subsequently, the optical-flow-based temporal pairwise
term is defined similarly to Eq. 19:

∑

(p,q)∈Nflow

ET(p, q,XCRF(p),XCRF(q)). (36)

We then substitute the OT-based temporal pairwise term
with the optical-flow-based term and run the component
comparison experiment without changing other settings
on the TUD-Campus dataset.

The experimental results are also given in Table 1.
The OT-based temporal term performs better than the
optical-flow-based temporal term.

4.3 Experimental results
4.3.1 Instance-level evaluation
The instance-level experimental result is presented in
Table 2 while examples of visualization mask-type and
edge-type results are respectively shown in Fig. 11 and
Fig. 12.
The proposed method outperforms Ochs’s and Milan’s

methods for all metrics. On the TUD datasets, the pro-
posed method outperforms He’s method in terms of
W .IoU and M.IoUB while underperforming He’s method
in terms of M.IoU. Furthermore, on the PETS2009

Table 3 Semantic-level results

TUD-Stadtmitte TUD-Campus

P. IoU [%] P. IoUB [%] Time [min] P. IoU [%] P. IoUB [%] Time [min]

Lin’s (RefineNet) 72.74 11.10 1.1 71.74 10.15 0.5

Proposed 79.12 30.00 17.7 80.45 24.05 9.6

TUD-Crossing PETS2009

P. IoU [%] P. IoUB [%] Time [min] P. IoU [%] P. IoUB [%] Time [min]

Lin’s (ReFineNet) 73.75 12.26 1.3 57.68 11.62 6.7

Proposed 78.82 28.27 20.5 75.42 79.12 118

The best performance data were italicized.
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Fig. 16 Semantic-level mask-type result

dataset, the proposed method fails to outperform He’s
method.
The performance of the proposed method compared

with He’s method is explained below.
The sizes of ESSs are almost the same because the

third term in Eq. 2 controls the size of the superpix-
els. Therefore, more superpixels are used to represent a

larger pedestrian; i.e., a larger pedestrian is more robust
against superpixel labeling error. As a result, our pro-
posed method works better on large pedestrians than
small pedestrians as shown in Fig. 13 and Fig. 14. Because
the TUD datasets have a higher proportion of large
pedestrians, compared with He’s method, the proposed
method has a higher W .IoU, which gives a higher weight

Fig. 17 Semantic-level edge-type result
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to the large pedestrian and results in a lowerM.IoU, which
normalizes the size of the pedestrian. However, on the
PETS2009 dataset, because most pedestrians are small,
the proposed method fails to outperform He’s method
in terms of both M.IoU and W .IoU. The equally sized
ESSs are considered the main drawback of the proposed
method.
Another drawback of our proposed method is a lack

of ability to handle occlusion. Figure 15 shows that the
proposed method fails to segment the two pedestrians in
frame t because of heavy occlusion. This relates to our
adoption of a color-based GMM for pedestrian modeling,
which may fail when the appearances of two pedestrians
are similar.

4.3.2 Semantic-level evaluation
We also run a semantic-level experiment to illustrate that
the use of the proposed method improves the perfor-
mance of semantic segmentation. Results are presented in
Table 3. On all datasets, the proposed method has a much
better P.IoU and P.IoUB. This is because not only does
the ESS preserve the pedestrian boundary better but also
the OT-based temporal pairwise term eliminates the tem-
porally inconsistent segments. Examples of semantic-level
mask-type and edge-type results are shown in Fig. 16 and
Fig. 17.

4.3.3 Sensitivity analysis
We conduct an analysis of the sensitivity of the segmen-
tation accuracy on the number of superpixels. We test the
performance for an approximately exponentially increas-
ing superpixel number on the TUD-Campus dataset and
present the results in Table 4. Although the performance
increases with the number of superpixels, the computa-
tional time is unacceptable if the number is too great;
for example, 5000 superpixels per frame. In conclusion,
2000 superpixels per frame is considered a good tradeoff
between the segmentation quality and processing time.

5 Conclusion
We proposed a method of extracting multiple pedestrian
silhouettes. The proposed method is formulated as a CRF
inference problem that incorporates the ESS, semantic
segmentation-based human score, and OT-based tempo-
ral pairwise term. In addition, we tested the proposed

Table 4 Sensitivity analysis on TUD-Campus

SP amount M. IoU [%] W. IoU [%] M. IoUB[%] Time [min]

500 38.27 64.16 11.28 2.8

1000 43.36 73.25 14.48 5.3

2000 48.08 77.89 16.85 9.6

5000 52.08 79.67 17.21 30.1

method on public datasets and achieved competitive per-
formance.
A detector of human parts [43] and multiple-detector

fusion for the tracking of multiple objects [44] have
recently been developed, and a future avenue of
research will apply the human-part detector to occlusion
reasoning.
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