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Abstract

Estimation of naked human shape is essential in several applications such as virtual try-on. We propose an approach
that estimates naked human 3D pose and shape, including non-skeletal shape information such as musculature and
fat distribution, from a single RGB image. The proposed approach optimizes a parametric 3D human model using
person silhouettes with clothing category, and statistical displacement models between clothed and naked body
shapes associated with each clothing category. Experiments demonstrate that our approach estimates human shape
more accurately than a prior method.
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1 Introduction
We propose a novel approach to estimate three-
dimensional (3D) human body shapes under clothing
from a single RGB image. Human shape is an essential
element in the computer vision field. Humans are usually
captured with clothing, that is, the actual (naked) human
shape is concealed by the clothing and usually differs
from the appearance. Virtual try-on systems, an impor-
tant application of naked shapes, typically superimpose
3D models of clothing onto human shape [1]. Although it
allows the consumer to visualize whether an item of cloth-
ing suits themwith regard to design and color, it is difficult
to determine how well the size of the item fits their actual
body shape.
The estimation of naked human shape has been stud-

ied, but most approaches employ multi-view images or
3D scanners (e.g. [2–4]) for acquiring 3D shapes. These
approaches are impractical for actualizing shape acquisi-
tion for virtual try-on at home, which requires easy input
using commodity cameras. Our approach requires the
input of only a single image and outputs parameters of 3D
human body shape.
The proposed approach is built on a previous single-

image human 3D modeling method (SMPLify [5]), which
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optimizes a parametric model of 3D human pose and
shape [6] to fit joint positions acquired by a joint estima-
tion method [7]. Joint-based optimization does capture
aspects of shape information related to human skele-
tons such as the length of the arms and legs. However,
in principle, joint locations do not include non-skeletal
information such as musculature and fat distribution.
The proposed method estimates 3D human pose and

shape including non-skeletal shape information under
clothing. We optimize the parametric 3D human model
using a single-image human silhouette with clothing
region segmentation while considering pre-constructed
statistics of the displacement by clothing (i.e., the dis-
tance between the naked and clothed contours) for each
clothing category. The displacement modeling is a signif-
icant challenge in our study since collecting a dataset of
image pairs of clothed and naked people is unfeasible. We,
therefore, model the displacement based on clothed per-
son shapes generated from naked silhouettes by a clothing
simulator.

2 3D shape estimation under clothing
2.1 Overview
As shown in Fig. 1, the proposed approach optimizes
the Skinned Multi-Person Linear (SMPL) [6] pose and
shape parameters under clothing, with only a single RGB
image as input. Similar to SMPLify [5], our approach opti-
mizes the parameters of a SMPLmodel [6], which consists
of 72 pose parameters (3 orientations for 23 joints + 3

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s41074-018-0052-9&domain=pdf
mailto: okura@am.sanken.osaka-u.ac.jp
http://creativecommons.org/licenses/by/4.0/


Shigeki et al. IPSJ Transactions on Computer Vision and Applications           (2018) 10:16 Page 2 of 6

Fig. 1 Overview. Parametric model of 3D human pose and shape [6] is initialized using joint-based optimization [5] and adjusted to fit a person’s
silhouette with contour displacement

root orientation) and 10 linear shape coefficients. Initially
using SMPLify [5] to obtain a joint-based optimization
result, we further optimize the parameters using silhou-
ette shape and the cloth-skin displacement model created
for each clothing category.

2.2 Clothing segmentation
Given an input image, such as a photograph, we first per-
form a semantic segmentation to extract both a human
silhouette and a clothing category. For this step, we utilize
RefineNet [8], a semantic segmentation approach which
successfully outputs high-resolution results for human
part estimation. To train RefineNet, we utilize an image
dataset with clothing segmentation, Clothing Co-Parsing
(CCP) dataset [9] and Fashionista dataset [10], where each
pixel is labeled by clothing categories. We re-classify the
clothing labels into 11 categories: “background,” “skin,”
“hair,” “inner wear,” “outer wear,” “skirt,” “dress,” “pants,”
“shoes,” “bag,” and “others” and train RefineNet using 1500
images from the dataset.

2.3 Cloth-skin displacement modeling
Modeling the displacement between clothing and skin is a
core part of this study. Given the impracticality of collect-
ing a large dataset of pairs of clothed and naked person
images, we employ an artificial dataset generated by a
conditional variational auto-encoder, conditional sketch
module (CSM) in [11], as shown in Fig. 2.We create image
pairs of clothed and naked person silhouettes by inputting
various silhouettes of the SMPL human body to the CSM
network. For each image pair of clothed and naked person
silhouettes, we compute the displacement on the clothed
and naked silhouette contours. We create a distribution
of the amount of displacement for each clothing category,
based on the category labels of clothed silhouettes. We fit
a truncated normal distribution pdfc for the displacement
distribution of each clothing category c, using maximum-

likelihood estimation. The probability returned by pdfc(d)

becomes zero when d is smaller than the lower bound
αpdfc , which is optimized via the maximum-likelihood
estimation, since naked body contours are never on the
exterior of clothing.

2.4 Fitting parametric human 3Dmodel
Given a person silhouette with associated clothing cat-
egory (see Section 2.2), joint locations, and cloth-skin
displacement models (see Section 2.3), the proposed
approach estimates the pose and shape through an opti-
mization of SMPL model parameters. The initial SMPL
parameters are acquired as the result of a joint-based opti-
mization method, SMPLify [5], where joint locations on
the input image are estimated by a CNN-based 2D joint
estimation approach, OpenPose [12] trained using MS
COCO dataset [13].
Here, SMPL consists of 72-dimensional pose (joint

angles and root orientation) parameters θ and 10-
dimensional linear shape coefficients β . The “ideal” pose
can change during the optimization of the shape parame-
ters β ; we therefore jointly optimize both β and θ .

2.4.1 Optimization
Our objective function for the optimization is defined as
follows:

Eshape(β) = λsEs(β , θ) + λcEc(β , θ), (1)
Epose(θ) = λsEs(β , θ) + λcEc(β , θ) + λjEj(β , θ) (2)

+λaEa(θ) + λspEsp(β , θ) + λθEθ (θ).

Eshape and Epose respectively denote the objective func-
tions for optimizing shape β and pose θ parameters.
Lambdas λs, λc, λj, λa, λsp, and λθ are weights for each
term.We alternatively minimize the objective terms: min-
imizing Eshape(β) using fixed θ and vice versa.
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Fig. 2 Cloth-skin displacement modeling. Computing displacement between naked and clothed contours generated by CSM [11] and fitting a
probability density function

Ej(β , θ), Ea(θ), Esp(β , θ), and Eθ (θ) are cost terms iden-
tical to those utilized in SMPLify. The term Ej(β , θ) is a
distance between 2D joints on the input image and the
joints in the estimated SMPL model projected onto the
image plane. For the other terms, refer to [5] for details.
The proposed approach employs cost terms for skin

contours Es(β , θ) and clothed contours Ec(β , θ). Let Sin
be a point set on the person silhouette contour of the
input image, which is fixed during the optimization, and
SSMPL be a point set on the corresponding SMPL silhou-
ette contour, which is a variable that depends on β and θ

to be optimized. The cost terms utilize nearest-neighbor
correspondences from Sin to SSMPL,

SSMPL,c =
⋃

p

(
NNSSMPL

(
p ∈ Sin,c

))
, (3)

where c ∈ C is a region label for the foreground categories
C = {skin, hair, ...}1. Thus, Sin,c ⊂ Sin denote input con-
tour points labeled as category c. The mapping function
NNSSMPL(p ∈ Sin,c) acquires the nearest-neighbor point of
p ∈ Sin,c from SSMPL.

Skin contour cost Es This term controls the behavior
of SMPL silhouette contours SSMPL,skin, where the cor-
responding input contour points Sin,skin are labeled as
skin region. The cost term penalizes the 2D Euclidean

distance between the corresponding points in SSMPL,skin
and Sin,skin:

Es = 1
nSin

∑

p∈Sin,skin

||p − NNSSMPL(p)||, (4)

where nSin denotes the number of points in Sin, which
normalizes the cost.

Cloth contour cost Ec The cost function Ec controls the
behavior of contours not labeled as “skin” so that the con-
tours located inside the input contour as much as the
cloth-skin displacement described in Section 2.3. Letting
Ccloth = C − {skin}, Ec is defined as the sum of cost terms
for each clothing category, calculated based on contour
distances:

Ec = 1
nSin

∑

c∈Ccloth

∑

p∈Sin,c

dp. (5)

Here, let ds denote the signed Euclidean distance
between p and NNSSMPL(p), where the distance becomes
positive if an input contour point p is outside of
the contour of the corresponding SMPL contour point
NNSSMPL(p). Accordingly, our distance function dp which
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Fig. 3 Body measurements. Ten body measurements for the
cloth-skin displacement modeling and the experiments

considering the cloth-skin displacement is defined as fol-
lows:

dp = (6)
{ − log

(
pdfc (ds) + ε

) (
ds ≥ αpdfc

)

λl(αpdfc − ds) − log(pdfc(αpdfc) + ε)
(
ds < αpdfc

) ,

where ε is a small constant to avoid log(0) = − inf.
Here, pdfc∈Ccloth denotes the truncated normal distribu-
tion modeled in Section 2.3, which returns the probability
for a given cloth-skin displacement but truncated at αpdfc .
We also define a function when ds is smaller than αpdfc
using the Euclidean distance weighted by λl to penalize
the SMPL contour points outside the input silhouette. In
the cost function, dp forms the negative log-likelihood.
Therefore Ec serves to change the SMPL parameters so
that the contour displacement fits the pre-constructed
displacement model.

3 Experiments
We performed qualitative and quantitative experiments to
unveil the effect of the proposed approach.

3.1 Quantitative evaluation
3.1.1 Experimental settings
For evaluation, we used a dataset consisting of time-series
3D textured human shape acquired by 3D scanners [4],
which includes the ground truth shape of the unclothed
persons. We utilized 3D videos of four subjects in motion,
where each subject wears two clothing variations: (1) T-
shirt/long pants and (2) soccer outfit2.We generated input
images by projecting selected frames from the dataset
to the virtual camera of 860×860 resolutions, located at
the front of the persons. From each 3D video sequence,
we sampled five frames for single-image input. While the
dataset provides detailed 3D shapes of human, the pro-
posed approach use SMPL models. As the ground truth
3D models for this experiment, we, therefore, generated
SMPL models fitted to the provided shape by minimizing
distances between the 3D surface of two models.
We compared the following two approaches:

1 Optimization using joint positions [5] (SMPLify).
2 Optimization using joint, silhouette contours, and

cloth-skin displacement model (proposed).

To evaluate shape accuracy, we translated the esti-
mated SMPL human model using the unit pose, which
is the same pose as the ground truth shape provided in
the dataset. We measured the accuracy as the average
error of the ten body measurements (shown in Fig. 3)
in the estimated and the ground truth 3D models.
For evaluation, we unified the overall height for each
model because the two approaches do not estimate scale
information.

3.1.2 Results
Table 1 shows the relative error of shape estimation by
each approach. Our approach yielded better accuracy than
that of SMPLify. Not only non-skeletal lengths (e.g., chest
circumference), we found a few measurements related to
human skeletons such as shoulder length are also esti-
mated with higher accuracy than SMPLify.

3.2 Visual comparison
While results in the previous section demonstrate the
improvements by the proposed approach, the dataset we
employed for the quantitative evaluation [4] does not

Table 1 The relative error [%] for BUFF dataset [4]

Method Clothing A B C D E F G H I J Average

SMPLify T-shirt, long pants 11.99 8.89 9.43 9.50 13.58 15.51 2.54 12.14 3.26 7.61 9.44
Soccer outfit 13.46 10.92 7.23 11.15 17.32 18.80 3.18 13.88 3.42 8.51 10.79
Average 12.72 9.90 8.33 10.32 15.45 17.15 2.86 13.01 3.34 8.06 10.12

Proposed T-shirt, long pants 6.08 2.01 7.51 4.32 3.58 4.01 1.47 9.18 2.99 7.46 4.86
Soccer outfit 6.49 3.89 5.25 4.66 5.51 10.01 3.12 9.34 3.90 8.47 6.06
Average 6.29 2.95 6.38 4.49 4.54 7.01 2.30 9.26 3.45 7.97 5.46

For each approach, we averaged the error in five frames sampled from the 3D video sequences
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Fig. 4 Visual comparison. From left to right: an input image, a result by SMPLify, and proposed approaches

include loose clothing and a variety of body shapes. One
important advantage of the proposed approach is the
adaptability to a variety of clothing types and body shapes.
We, therefore, describe a visual comparison using a variety
of photographs collected from fashion photographs.
Figure 4 shows one result of the two approaches

described in Section 3.1. In comparison between the joint-
based approach (SMPLify) and the proposed approach,
joint-based optimization does not produce a body shape
that represents musculature and fat distribution.

4 Conclusions
This paper has described the first approach that esti-
mates human 3D pose and shape, including non-skeletal
information from a single RGB image. We model the
displacement between clothed and naked contours for
each clothing category, using an artificial dataset cre-
ated by an auto-encoder-based image generation method.
The proposed approach optimizes a SMPL parametric
human model through a likelihood-based cost function,
using a cloth-skin displacement model, silhouette shape,
and joint locations. Through the experiments, the pro-
posed approach more accurately estimated shape coef-
ficients as compared with the joint-based approach [5].
Extension of the proposed approach to unsynchronized
multi-view input is an interesting and viable research
direction.

Endnotes
1 Because contours must belong to foreground regions,

C does not include the “background” label.
2 The original version of [4] includes five subjects in

public, while footage of one subject wearing only a single
clothing combination was unused in this experiment.
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