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Abstract

We tackle an optical measurement of the internal structure of a diffuse surface object—we define as an object that
has a diffuse surface and its interior is transparent, like grapes or hollow plastic bottles. Our approach is based on
optical tomography that reconstructs the interior from observations of absorption of light rays from various views,
under the projection of the light. The difficulty lies in the fact that a light ray that enters changes its direction at the
interaction of the surface, unlike X-ray that travels straight through the object. We introduce a model of light path in
the object called shortest-pathmodel. We acquire the absorption of light rays through the object by the measurement
upon the assumption of the model. Since this measurement acquires insufficient observation to reconstruct the
interior by conventional reconstruction algorithms, we also introduce a reconstruction method based on a numerical
optimization that a physical requirement of the absorption is taken into account. Our method is confirmed successful
to measure the interior in a real-world experiment.

Keywords: Optical measurement, Computed tomography, Radon transform, Optimized reconstruction

1 Introduction
The measurement of an object’s interior is important
in various applications, such as the detection of foreign
objects in food and the inspection of the human body in
a medical examination. An optical measurement is a safe
inspection technology that does not use X-rays and has
no risk posed by a radiation dose. Furthermore, optical
measurement provides functional information on opti-
cal properties, e.g., blood flow is estimated from spectral
absorption.
The difficulty in making an optical measurement results

from a light ray readily changing path at a point of interac-
tion with an object. We aim to measure the internal struc-
ture of an object that has a diffuse surface and an interior
that is assumed transparent, where light is absorbed but
not scattered. Fruits like grapes, light bulbs with white
glass, and hollow plastic bottles are examples of such
objects. For such an object, light diffuses at the surface and
rays advance in various directions.
Optical tomography is a technique of optical measure-

ment used to reconstruct the interior of an object. Optical
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projection tomography (OPT) [1] is a simple technique
that is the same as X-ray computed tomography (CT)
except that it uses visible or infrared light instead of X-
rays. It is assumed that light travels in a straight direction
in the object, as for X-rays. OPT provides a clear three-
dimensional reconstruction of a small specimen and has
contributed to many biological studies; however, it cannot
deal with a diffuse surface.
One difficulty is the scattering of light in the internal

medium. Techniques have been proposed to cope with
scattering, e.g., techniques for single scattering [2] and
multiple scattering [3–5]. Scattering in the human body is
approximated as an isotropic diffusion in diffuse optical
tomography; applications of the approximation are mam-
mography [6] and functional imaging of the brain [7, 8].
A major disadvantage of the techniques is that the radia-
tion and probing require contact with the target. As the
number of contacts is limited physically, the resolution is
limited.
We propose an optical tomography method based on

the shortest-path model that assumes that a ray scatters
only at the surface and travels straight in the interior
medium. Light rays in the object are measured without
contact by an optical system that consists of a camera,
light source, and rotary stage. After paths of light rays
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are determined considering the geometry, the interior is
reconstructed through an inverse Radon transform as for
general X-ray CT.
The contribution of this paper is fourfold. First, we

propose a simple model of light rays that allows the
reconstruction of the internal structure of a diffuse sur-
face object by an inverse Radon transform. Second, we
clarify the problem that measurement with a general per-
spective camera results in insufficient observations for
reconstruction. Third, we introduce the limitation of the
physically correct value range on the distribution and the
smoothness constraint with total variation (TV) semi-
norm regularization to reconstruct the full interior from
the insufficient observations. Fourth, we clarify the rela-
tionship between the placement of the light source in
the measurement configuration and evaluate the effect of
scattering.
This paper extends our previous work [9] as follows. (1)

The measurement is made more practical using a more
widely used perspective model rather than the less used
orthogonal projection model. (2) We introduce a contour
estimation into the framework that breaks the limitation
of the shape of the target, previously limited to a cylinder.
(3) A reconstruction method, which is peculiar to the
shortest-path model, is introduced to deal with the insuf-
ficient observations. (4) We discuss the appropriate setup
of the measurement and the robustness against scattering.
The remainder of the paper is organized as follows.

Section 2 describes the process of acquiring light rays
while Section 3 describes the reconstruction method.
Section 4 presents the results of a real-world experi-
ment and evaluations made using our method, while we
conclude the paper in Section 5.

2 Acquisition of light rays
2.1 Distribution of the absorbance coefficient and total

absorption
We reconstruct a distribution of the absorption coeffi-
cient σ of the target’s interior. The absorption coefficient
represents how much light is absorbed as light travels a
unit distance. We now define the total absorption A by
following the Lambert-Beer law, as the logarithm of Io
(the intensity of light after light travels through the tar-
get) divided by Ii (the intensity of light before entering the
target):

A = log Io − log Ii. (1)

2.1.1 Radon transform
The relationship between the total absorption and absorp-
tion coefficient is described by the Radon transform. For
a simplicity, we consider the problem in two dimen-
sions. When a ray propagates through an area �, the

total absorption is an integral of the absorption coefficient
along the path:

A� =
∫∫

x,y∈�

σ(x, y)dxdy. (2)

The path of a ray is generally assumed straight in the
Radon transform. Let us describe a straight ray in polar
coordinates fixed on the object as illustrated in Fig. 1. A
radon transform about a ray (X, θ) is written as

A(θ ,X) =∫ ∞

−∞
σ(z sin θ + X cos θ ,−z cos θ + X sin θ)dz.

(3)

We reconstruct a distribution of the absorption coeffi-
cient using the inverse Radon transform that is derived
from Eq. (3). The reconstruction of the interior requires
the total absorption of rays passing through the interior
(i.e., A(θ ,X)) for all possible θ and X. Ideally, these rays
are acquired by measuring the transmitted rays when par-
allel rays are cast toward the target from various angles.
This method works well when the paths of rays are not
disturbed by the target as in the case of X-rays. However,
as illustrated in Fig. 2, each ray entering the object spreads
when the target has a diffuse surface. The transmitted rays
are no longer parallel, and it is difficult to determine paths
of the measured rays.

2.2 Shortest-path model
We model light paths in a diffuse surface object as a first
step to determining the paths of rays. When a single ray
of light enters an object with a diffuse surface, the ray
branches into many paths having various directions. The
basis of the shortest-path model is the assumption that
a ray diffuses at a point on the surface but travels in a
straight direction inside the object. Paths in the object are
therefore regarded as a set of straight rays spreading from
the incident point as illustrated in Fig. 3.

Fig. 1 Relation between the path and sinogram coordinates
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Fig. 2 Transmission of rays when parallel rays are cast

2.3 Model validity in the real situation
In the real situation, the paths in the object do not always
follow the shortest path. The path in the real situation is
illustrated in Fig. 4.
One of the difficult targets could be the object with thick

skin. Because the incident point of the path is determined
as the first point where the light from the source hit the
surface, an actual incident point of the path should lie
on the inner boundary between the skin and the body;

Fig. 3 Shortest-path model assuming a ray scatters only at the surface
but travels straight in the medium

Fig. 4 Applicable and non-applicable material of our model

therefore, these two points do not match when the skin is
thick and the light is spread by the diffusion in the skin.
Our model is applicable when the skin is thin enough.
Another factor that could affect the reconstruction is

the scattering in the medium.When scattering occurs, the
path in the medium is no longer straight. The effect of the
scattering is evaluated in Section 4.4.

2.4 Measurement and light path alignment
This section describes the measurement based on our
model, called the shortest-path measurement. After rays
passing through the object are measured, their paths are
determined in a process called light path alignment.

2.4.1 Setup of themeasurement
Because the light path is modeled as a straight line, a path
in the object is uniquely determined if both ends of the
path are specified. If there is light in a large area, which
means many rays are cast as illustrated in Fig. 2, the exact
point that a ray enters is difficult to determine. Incident
light should fall in a small area to avoid this problem.
Meanwhile, rays exiting the object are measured by shoot-
ing the surface of the target. The shooting is repeated
while the object is rotated to collect rays entering at and
exiting from various points.
Accordingly, a setupwill consist of a narrow light source,

camera, and rotary stage on which the target is placed, as
shown in Fig. 5.
We employ an off-the-shelf perspective camera that

provides a wide field of view (FOV). We must consider
the FOV because it affects the measurement of a ray. In
the case of a perspective projection, a ray from the light
source is determined from the relationship between the
focal point and the image plane of the camera.

2.4.2 Light path alignment
Paths of a ray in a three-dimensional scene should be com-
puted because they are required for the reconstruction.
The three-dimensional coordinates of the points at which
a ray enters and exits are determined as follows. The point
at which a ray enters is determined by calculating the
intersection of the ray from the light source and a contour
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Fig. 5 Geometry of the setup

of the target. Similarly, the point at which a ray exits is
determined by calculating the intersection of the ray from
the camera and a contour of the target. To uniquely deter-
mine these intersections of the ray and the contour of the
target, all the contours of the target must not be occluded
from the light source or the camera. Therefore, the shape
of the object need to be convex in our measurement.
To obtain a target contour, we compute a visual hull [10]

as the shape of the target in the following steps. The target
is first captured from various views under ambient light-
ing. A silhouette is then extracted by binarization after
subtracting the background from the captured image. A
visual hull is finally computed by taking an intersection of
the perspective projection of the silhouette on the object
space. Since our measurement needs the shape of the tar-
get to be convex, it is reasonable to utilize a visual hull that
is only applicable for convex shapes.
We employ a sinogram for the representation of

acquired rays (Fig. 6). Once again, we consider polar coor-
dinates (X, θ) fixed on the target. The origin is at the
center of rotation in the measurement setup. In a sino-
gram, horizontal and vertical axes respectively correspond
to (X, θ), and an attenuation of the ray is stored, as illus-
trated in Fig. 1. For each ray, we define an intersection
of the ray and a contour of the object in Cartesian coor-
dinates (x, y) that share the same origin as the polar
coordinates. By denoting the intersection of a ray from the
camera and a target by pl and the intersection of a ray from
the camera and a contour by pc, the angle of a path θ is
calculated as

Fig. 6 The coverage is represented by the filled area in the sinogram.
The area of both at the center and at the sides cannot be filled with
respect to the setup of measurement and the projection model of
the camera

θ = arg(pl − pc), (4)

where arg(·) denotes the angle between a vector and the
x-axis. A displacement of path X is calculated according to

X = pl ·
[
sin θ

cos θ

]
. (5)

This sinogram is identical to that used in conventional
CT, and the same reconstruction technique can therefore
be employed.

2.5 Observation rate of the light path
When the surface of the object is measured using a single
camera, not all rays in the object are measured depending
on the object’s shape and the optical setup.We now look at
Fig. 5 to understand the unobserved rays. Rays 1 and 2 cast
from the light source enter the object at the same point
but exit from different points, before being measured by
the camera on the opposite side of the object. While ray
1 is observable because it reaches the surface visible from
the camera, ray 2 is unobservable because it reaches the
surface unobservable from the camera.
Let us assess the effect of unobserved rays. We simulate

the measurement for the case that the target is a cylinder
and generate sinograms for different θl in Fig. 5. Figure 7
shows generated sinograms and the “fullset” sinogram
that contains sufficient rays with which to reconstruct
the full interior. There are missing areas in the sinograms
owing to the unobserved rays. In the case of θl = 30◦,
there are missing areas on both sides of the sinogram.
Likewise, in the case of θl = 60◦, there are missing
areas on the sides but the areas are smaller. In contrast, a
missing area appears at the center in the case of θl = 120◦.
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Fig. 7Missing area of a sinogram representing the insufficient
observations of rays

We next evaluate the observation rate of rays. Here, we
measure the observation rate using coverage—a ratio of
the observed number of rays to the number of rays in
the fullset sinogram. To describe the missing part, we use
the distances smin and smax as shown in Fig. 6. Let θFOV
denotes FOV. These distances change as follows:
for the case of 0 ≤ θl ≤ π−θFOV

2 ,

smin = 0 (6)

smax = cos
(

π

4
− θl

2
+ θFOV

4

)
, (7)

for the case of π−θFOV
2 θl ≤ π+θFOV

2 ,

smin = cos
(
3π
4

− θl
2

− θFOV
4

)
(8)

smax = cos
(

π

4
− θl

2
+ θFOV

4

)
, (9)

and for the case of π+θFOV
2 ≤ θl ≤ π ,

smin = cos
(
3π
4

− θl
2

− θFOV
4

)
(10)

smax = 1. (11)

From the definition of smax and smin in Fig. 6, the coverage
is calculated as smax − smin. In addition, the coverage takes
its maximum at

θl = π − θFOV
2

. (12)

Figure 8 shows the relationship between the coverage
and θl for the perspective projection when the FOV is
30◦ and 60◦. It is found that the coverage of FOV = 60◦
is lower than that of FOV = 30◦ for any θl. In addition,
we show coverage in the cases of the orthogonal projec-
tion that were considered in a previous paper [9]. In the
case of orthogonal projection, the coverage is satisfied at
θl = 90◦; hence, a lack of observations can be avoided
using this angle. In contrast, the coverage is never satis-
fied in the case of perspective projection. The problem
of insufficient observations is inevitable unless a single
perspective camera is used.

3 Reconstruction
When there are insufficient observations, a possible solu-
tion is to modify the setup by adding another light source

Fig. 8 Coverage of the measurement

or camera to complete the observation. When it is pos-
sible to observe all the paths, the interior should be
reconstructed most accurately. One of the difficulties of
this approach is that an additional light source or cam-
era must be precisely aligned because the reconstruction
is sensitive to misalignment. Another difficulty is that
the number and the placement of the light source and
the camera depend on the shape of the object. Although
the optimal configuration is difficult to find, it is not
usable for other objects. Moreover, there is no guaran-
tee of the existence of the configuration that makes the
observation complete.
In this paper, we employ numerical optimization to deal

with the problem of incomplete observations. The numer-
ical optimization can be used with the multiple light
sources and camera.

3.1 Formulation as an optimization problem
In the case that the observations are insufficient, the cor-
rect reconstruction is difficult because there are multiple
solutions that agree with the observation mathematically.
We introduce two constraints to eliminate solutions that
are not physically correct and to achieve convergence to
a more realistic distribution. The first constraint is the
physical constraint (PC) on the range of the distribution
of the absorption coefficient that is derived from the exist-
ing observations. This constraint rejects solutions that
are physically wrong; however, there are still many possi-
ble distributions. The second constraint is regularization
based on the total variation (TV) semi-norm that imposes
smoothness on the distribution. This constraint allows
convergence to a realistic solution by reducing the effect
of noise of the observation.



Iwaguchi et al. IPSJ Transactions on Computer Vision and Applications           (2018) 10:15 Page 6 of 10

We formulate the reconstruction as an optimization
problem:

argmin
σ

E(σ ) + ιC(σ ) + λ‖σ‖TV . (13)

The first term is a data-fidelity term that implies that
a reprojection of an estimated distribution by the Radon
transform should be close to a sinogram Aobserved. The
second term is the PC on the distribution, and the third
term represents TV semi-norm regularization. Because
the objective function of Eq. (13) is convex, we employ the
alternating direction method of multipliers to solve the
problem.

3.1.1 Reprojection error of the Radon transform
To derive the reprojection error, we rewrite the Radon
transform (Eq. (3)) in matrix form. Let i denote an index of
a cell of a discrete distribution after serialization. A Radon
transform of a ray having index j is written as

Aj =
∑
i
rijσi, (14)

where

rij =
{
1 (if ray j hits σi)

0 (otherwise).
(15)

By combining Eq. (14) for all rays as a linear system,

A = Rσ (16)

is derived. In the optimization problem, reprojection error
is computed by taking the difference between A and the
projection of estimated σ obtained using matrix R. We
consider reprojection error only for available observa-
tions and measure it using the L − 2 norm. Let Robserved
denote the Radon transform for available observations
and Aobserved denote a sinogram of available observations.
Finally, the data-fidelity term is derived as

E(σ ) = ‖Aobserved − Robservedσ‖22. (17)

3.1.2 Physical conditions of light absorption
The constraint is determined by the existing observations
considering a physical condition of the coefficient of light
absorbance. Because light does not increase in intensity
as it travels through an object, the absorbance coeffi-
cient cannot be less than zero. The lower bound of the
absorption coefficient σi is written as

σi ≥ 0. (18)

The upper bound of the absorbance coefficient can be
determined by considering the relationship between the
total absorption and the distribution of the absorbance
coefficient.
As Eq. (14) implies, the total absorption of a ray is the

integral of the absorbance coefficient along the path. The
absorbance coefficient of each cell is therefore no more

than the total absorption. In the example presented in
Fig. 9, only three light paths pass through σj. Therefore,
σj must not exceed the total absorptions of the three light
paths, and σj is thus constrained as σj ≤ min(A0,A1,A2).
The absorption at a certain pixel must therefore not be
higher than the minimum of all the projections that travel
through the pixel. In the general case, the upper bound is
written as

σj ≤ min
i∈χj

(Ai), (19)

where χi is a set of rays that hit σj.
The lower and upper bounds form the box constraint of

the solution. Let a set C denote the range of absorption:

C =[ 0, σmax] , (20)

where

σmax =
(
min
i∈χ1

(Ai), min
i∈χ2

(Ai), · · ·min
i∈χN

(Ai)

)�
. (21)

The constraint is then represented by the indicator
function ιC(σ ):

ιC(σ ) =
{

0 (if σ ∈ C)

∞ (otherwise).
(22)

3.1.3 TVminimization
We define the TV semi-norm ‖ · ‖TV as

‖σ‖TV :=
∑
i,j

√
| (∇1σ ) |2 + | (∇2σ ) |2, (23)

where ∇1 and ∇2 are the discrete horizontal and vertical
differential operators. The minimization of the semi-
norm forces the distribution to vary gradually while pre-
serving the edges. This is preferable in most cases, and
we can adjust the effect of the term by choosing a small λ
whenever it is not suitable.

4 Experiment
4.1 Appropriate setup of the measurement
We determine the appropriate setup before performing an
experiment in a real environment.

Fig. 9 Rays passing thorough a cell of the distribution



Iwaguchi et al. IPSJ Transactions on Computer Vision and Applications           (2018) 10:15 Page 7 of 10

We first investigate the characteristics of our recon-
struction method based on the optimization by com-
paring with the filtered back projection (FBP) that was
employed in [9]. We compare the reconstructed interi-
ors obtained under different setups of the measurement
to evaluate the effect of the setup on the accuracy of
the reconstruction. Synthetic sinograms are generated
by solving the forward Radon transformation (Eq. (16))
for different θl in Fig. 5. We also evaluate the interiors
reconstructed by the FBP and our reconstruction method.
Figure 10 shows the reconstructed interiors for θl = 0◦,
30◦, 60◦, 90◦, and 120◦. In the cases of θl = 0◦, 30◦, and
60◦, there are missing areas on both sides of the sino-
gram. The outer parts are not correctly estimated owing
to the large missing areas at θl = 0◦, but the central part
is estimated correctly. There are similar tendencies in the
results for θl = 30◦ and 60◦, but the errors are smaller
because of the better observation.
In contrast, the center of the sinogram is missing in the

cases of θl = 90◦ and 120◦. It is found that our recon-
struction method failed to reconstruct the center of the
interior as for reconstruction by the FBP. This is because
of the absence of observations of the center; no rays pass-
ing through the central area are observed, whereas more
than one ray is observed in the previous cases. The whole
interior needs to be reconstructed such that the center
of the sinogram is not missing. In terms of quality, our
method provides a better reconstruction than the FBP.
Whereas the result of the FBP has line artifacts and blur-
ring, a clear shape is reconstructed without artifacts using
our method.
For quantitative evaluation, the root mean squared

error (RSME) and the maximum of the absolute error

are shown in Table 1. Note that the original distribu-
tion is varied in the range between 0 to 0.2. The RSME
reflects the correctness of the reconstruction, which is
discussed above. They are small at θl = 30◦ and 60◦
and increase as the number of failure pixels increases.
The maximum of the absolute error reflects how the
worst pixel is reconstructed. Referring to an absolute error
in Fig. 10, the worst pixels are reconstructed from the
missing area of the sinogram. It is confirmed that the abso-
lute error is bounded by the physical constraint of the
reconstruction.
We now look for an appropriate setup such that the cov-

erage of the observation is high, while the center of the
sinogram remains filled. Let us review the coverage of the
observation in Fig. 8. The coverage takes its maximum at
θl = π−θFOV

2 ; see Section 2.5 for details. It is noteworthy
that the center of the sinogram is missing in the case that
θl >

π−θFOV
2 . For these reasons, the appropriate setup is

θl = π−θFOV
2 ; however, care needs to be taken that θl does

not exceed the angle.

4.2 Experiment on a real object
In this section, we perform an experiment in a real envi-
ronment to confirm the validity of the shortest-path mea-
surement by comparing the result with a measurement
made under a parallel lighting setting.
The target of the experiment is a bin filled with gelatin

and blue transparent plastic struck at some distance from
the center of the bin.
The setup is shown in Fig. 11 for the shortest-path mea-

surement; the target on the rotary stage is illuminated by
the light source and captured by the camera from various
angles. The light is collimated with a lens and is narrowed

Fig. 10 Comparison of reconstructions made using the FBP and our optimization method
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Table 1 RSME and max of absolute error versus the light angle

Light angle θ (°) RSME Max. of absolute error

0 3.15 × 10−3 1.32 × 10−1

30 2.57 × 10−4 0.24 × 10−1

60 1.32 × 10−4 0.60 × 10−1

90 2.31 × 10−3 2.00 × 10−1

120 7.55 × 10−3 2.00 × 10−1

by an aperture. θl, the angle between the light and camera
direction, is fixed to 45◦. We chose the angle such that
the center of the sinogram is filled while the observed
intensity is high enough for a quick measurement.
To calculate the total absorption, a reference object

without a plastic stick is measured in addition to the tar-
get; the total absorption is then calculated by Eq. (1). Note
that this calculation also cancels out the angular nonuni-
formity of diffusion. Generally, the intensity distribution
through the surface is described by the bidirectional trans-
mission distribution function fT (ωi,ωo), where ωi is the
incidence angle and ωo is the outgoing angle of the light.
Because st and sr have ωi and ωo in common, the bidirec-
tional transmission distribution function fT of the surface
of the target is cancelled out.
The next step is alignment of the light path. After a con-

tour of the target is estimated considering the visual hull
of silhouettes from various views, the light path is aligned
with the contour estimated and a sinogram is generated.
The interior is reconstructed from the sinogram.
Similarly, we measure the same target under a parallel

light setting. The same setup is used except that a parallel
light source is cast directly and θl is set to 0◦. The sino-
gram is generated directly from captured images under
the assumption that rays travel straight in the target and
measured transmitted rays remain parallel to each other.
Figure 12 shows sinograms of the parallel light setting

and the shortest-path measurement. We cannot see an
effect of plastic in the sinogram of the parallel light set-
ting. This is because the parallel rays once diffuse at the
surface when entering the target and light paths are mixed
as illustrated in Fig. 2; therefore, rays passing through the

Fig. 11 Setup of the experiment

Fig. 12 Sinograms. Pixels in sinograms of shortest-path measurement
are described in the figure at the bottom right

plastic are no longer distinguished. In contrast, we see a
clear trajectory through the plastic in the sinogram of the
shortest-path measurement. There is also blurring along
the trajectory and non-zero values outside the trajectory.
This should be a result of corruption of the path due to
scattering in the media and reflection and refraction at the
plastic’s surface. We can also see small missing areas on
both sides in the sinogram owing to the limitation of the
measurement.
The result of reconstruction is shown in Fig. 13. From

the top view of the target, the distribution of the absorp-
tion is expected as shown at the top right. The red and
blue lines in the figure respectively indicate the con-
tour and the boundary between observed and unobserved
areas of the sinogram. We now look at the reconstruc-
tion of the parallel light setting that is reconstructed by
the FBP. The distribution is almost uniform, and we can
hardly tell the area of the plastic stick. For the shortest-
path measurement, we show two results of reconstruction
obtained without optimization (i.e., the FBP) and with
our optimization method. In contrast to the case for
the parallel light setting, the proposed method success-
fully reconstructs the area of plastic stick regardless of

Fig. 13 Reconstructed interior
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the reconstruction method. This suggests that our path
model approximates the actual paths well because the
paths are converted to parallel by the alignment pro-
cess. This confirms the validity of our assumption on
light paths. There are blurry artifacts outside the plastic
area that should be associated with the corrupted paths
described above.
We now compare the results of the reconstruction

methods. In the result of the FBP, the distribution outside
the blue circle is not reconstructed and it corresponds to
the missing area in the sinogram. In contrast, our opti-
mization method is able to reconstruct the distribution
where there are insufficient observations. It is confirmed
that our method has an advantage over the FBP method.

4.3 Measurement of arbitrary convex shape
We perform a simulation experiment to show our frame-
work works with an arbitrary convex shape. In this exper-
iment, we simulate a measurement of a triangle pole. θl is
set to 30◦. Figure 14 shows the ground truth, the estimated
contour, and the reconstructed interior with optimization.
A blue line shows the ground truth contour of the object.
In the estimated contour, the contour of the triangle is
estimated almost correctly. Also, from the reconstructed
interior, we can see the circular area at the center is
reconstructed without a significant artifact.

4.4 Effect of scattering
Our method is based on the assumption of the shortest-
path model that only the absorption of light in the object
need be considered. However, as we found in the experi-
ment for the real object, scattering in the mediummay not
be negligible in a practical measurement. It is expected
that if the scattering of the medium is strong, our model
is no longer a good approximation of paths of rays. In this
section, we confirm the effect of scattering in a simulation
environment.
In this experiment, the CT measurement is simulated

with physically correct light transport. Synthetic data are
generated by rendering with photon mapping algorithm
[11]. The scene is shown in Fig. 15, i.e., a cylinder is
illuminated by collimated light as in the experiment on
the real object in Section 4.2. The cylinder is filled with

Fig. 14Measurement of the object with triangle shape

Fig. 15 Illustration of the rendered scene

the participating medium, and there is another cylinder
inside. The scattering of the media is isotropic and is
parameterized with scattering coefficient σs and absorp-
tion coefficient σ . σ is set to zero in the outer cylinder
and 10.0 in the inner cylinder. The refractive index of the
media is set to 1.0.
The CT measurements are performed for various scat-

tering coefficients σs. Note that the radius of the cylinder
is 1 and σs decides the mean free path of the ray according
to 1/σs. Figure 16 shows the top view and the projections
on the camera for scattering coefficients σs of (i) 1.0, (ii)
2.0, (iii) 3.0, and (iv) 5.0. It is found that the projection is
clear in (i), where most rays scatter once or twice, and the
scattering degrades the projection as σs increases to 5.0,
where rays scatter more than five times on average. The
degradation of the projection directly reflects the quality
of the raw and aligned sinograms as shown in Fig. 17. The
bottom row shows the reconstruction from the aligned
sinogram. We see that the degradation of the sinogram
affects the reconstruction. While the highly absorbing
part has a clear shape in (i), the shape is more blurry in (ii),
(iii), and (iv).
The results show that our measurement is degraded by

scattering; however, this can possibly be overcome using
descattering techniques [12, 13].

5 Conclusion
We investigated the optical measurement of the inter-
nal structure of a diffuse surface object. Our framework
is built on the shortest-path model that assumes a ray

Fig. 16 Top views and projections for different types of scattering
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Fig. 17 Sinogram and reconstruction for different scattering
coefficients

only diffuses on the surface and travels straight inside
an object. Our measurement is realized with a simple
setup with a rotary stage, light source, and off-the-shelf
perspective camera. It was found that the observation of
light rays is never sufficient with this setup for the con-
ventional reconstruction method. We solved this problem
by introducing a reconstruction method based on numer-
ical optimization. Because of the physical constraint on
the light absorption and TV semi-norm regularization,
the full interior could be reconstructed. Our method was
shown to be able to reconstruct the interior of an object in
a real-world experiment. Furthermore, we evaluated the
reconstruction with respect to the measurement setup. It
was found that the reconstruction is not perfect if rays
vital to the reconstruction are not observed. We also con-
firmed that scattering degrades the measurement; how-
ever, themeasurement is still useful for a weakly scattering
medium.
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