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Abstract

In this paper, we propose a two-step method to give a unified explanation of camera calibration with two coplanar
conics. Various kinds of conics-based patterns in which often two parameters are unknown have been studied in
previous literatures. The key in such algorithms is to adopt different strategies to compute the world-to-image
projective transformation (also called 2D homography). In the first step of our method, we show that two unknown
parameters can always be computed in general cases by utilizing the underlying constraints on all parameters
through the projective transformation (mathematically called projective invariants). The accompanied ambiguity
problem is that the solutions of the unknown parameters are multiple. In the second step, the four intersection points
(real or complex) of two totally known conics are utilized to compute the homography. The ambiguity in this step
arises from the point correspondence problem. This results in multiple possibilities of correspondences followed by
the ambiguous homographies. After analyzing the reasons of the two kinds of ambiguities, we apply the Centre Circle
constraint to completely remove them. Finally, the experiments are shown to validate the proposed technique.

Keywords: Homography, Conics, Projective invariants, Ambiguity problems, Centre Circle constraint

1 Introduction
Conic as an important image primitive has been studied
very well in the early 1990s [1–3]. Many major problems
in computer vision, such as reconstruction, motion esti-
mation, and pose determination, can be solved with two
coplanar conics. For instance, Forsyth et al. use projective
invariants of coplanar conic pairs to recognize curved pla-
nar objects [4]. Rothwell et al. use four intersection points
of two conics to obtain homography which in fact results
in the solution of relative motion and pose [5]. However,
the above works all assume that the conics’ parameters
are known which is not always available in practice. If the
a priori knowledge about the object conics is scarce or
imprecise, there is no method to handle these cases. More
importantly, the methods of computing homography in
[1, 5] are not suitable for calibration because the proposed
posterior rules of removing the correspondence ambigu-
ity are only effective when the intrinsic parameters of the
camera are given.
In the 2000s, people explored various 2D conics pat-

terns, such as concentric circles, confocal conics, coplanar
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circles, Principal-Axes Aligned (PAA) conics, conics with
a common axis of symmetry, enclosing ellipses, and
degenerate conics with double complex contact to cali-
brate a camera [6–13]. The core step in such algorithms
is to determine the homography between the model plane
and its image. But it is hard to extend their methods as
they only find one special pattern.Moreover, due to lack of
the natural link between different conditions, there is no
explanation for the confusing question why this pattern is
valid while others are not.
In recent years, Zhao [14] proposed a novel method

of the 2D Euclidean structure recovery from the conic
feature correspondences. The conic features are trans-
formed from the homogeneous coordinates to the lifted
coordinates to represent the geometric objects without
considering the conic dual to the absolute points. Wang
et al. [15] propose an algorithm which is efficient and easy
to estimate the pose of camera based on the conic corre-
spondences from world plane to image plane system. The
above method needs more than two conics to work. How-
ever, it is not common to see many conics in the nature
scene.
In fact, the key of camera calibration based on two

coplanar conics is how to obtain homography using partial
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Fig. 1 The Centre Circle and the cuboid bound

information of the conics in the model plane. In other
words, what is the minimal condition used to compute
the homography for two coplanar conics? Based on this
idea, we propose a two-step method to give a unified solu-
tion of conics-based camera calibration. The proposed
method not only easily explains all existing conics pat-
terns, but also finds other possibilities. The first step is to
get the unknown parameters by using geometric invari-
ance. In this step, we discuss which form of projective
invariants should be chosen to construct the equations on
the unknown parameters followed by the algebraic and
geometric explanation of ambiguous solutions. This ambi-
guity problem results in the uncertain parameters of the
conics. The second step is to compute homography by
utilizing four intersection points of two conics and their
correspondences in the image, no matter whether they
are real, complex, or partially complex. This correspon-
dence ambiguity will lead tomultiple possibilities of corre-
spondences and the ambiguous homographies. To obtain
the only correct solution, these two kinds of ambiguities
must be removed. Thereby, owing to the Centre Circle
constraint [16, 17] which provides the geometrical expla-
nation of the world-to-image homography in perspective
transformation, we set a cuboid bound for the camera cen-
ter [18] to judge whether the computed homography is
correct. Finally, the experiments with real and simulated
data verify the correctness of the proposed method.
The contributions of this paper could be concluded as

follows:
• A unified explanation to the problem of calibration

with coplanar conics is proposed.
• We show how to use projective invariants to

compute unknown parameters of conics.
• We analyze the correspondence ambiguity of four

intersection points of conics.

• We apply the Centre Circle constraint to remove the
above two ambiguities.

The paper is organized as follows. Section 2 includes
some preliminaries. Section 3 gives the problem state-
ments. Section 4 describes different invariant forms of
conics and the algebraic and geometric reasons of ambigu-
ous solutions. Section 5 first classifies the reasons of
the points-correspondence ambiguity into three aspects.
Then, several constraints are adopted to seriously reduce
the number of the ambiguous correspondences. The
degenerate situations are also discussed in this section.
Section 6 provides our experimental results with simu-
lated and real data.

2 Preliminaries
2.1 Basic equations
Suppose the object plane is located on Z = 0 plane
in the world coordinate system. The world-to-image
homography matrixH is given by

H = K[r1, r2, t] , where K =
⎡
⎣
fu u0

fv v0
1

⎤
⎦ (1)

where (u0, v0) are the pixel coordinates of the principal
point and fu and fv are the scale factors in the image’s u and
v axes. r1, r2 are the first two vectors of rotation matrix R.
t denotes the translation vector between the world coordi-
nate system and the camera coordinate system. K is called
the intrinsic parameter matrix and (R, t) are called the
extrinsic parameters.
Two constraints on K provided by the homography are:

hT1 K
−TK−1h2 = 0 (2)

Fig. 2 Two general conics with six parameters in our coordinate
system
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Fig. 3 Four conics classes with different shapes. From left to right, they are respectively PAP conics with three DOF, OPAS conics with two DOF,
concentric conics with two DOF, and PAA conics with one DOF. Their quadrangles are respectively a quadrangle whose four vertices lie on a
common circle, a trapezoid, a parallelogram, and a rectangle

hT1 K
−TK−1h1 = hT2 K

−TK−1h2 (3)

where h1, h2 are the first two columns of H. It is well
known in [19–21] that given the correct correspondences
of four coplanar points, the 2D homography H can be
solved.

2.2 Projective invariants related to two coplanar conics
Invariant theory as an important technique has been
investigated in previous literatures [2, 4, 22, 23]. There are
mainly three forms of invariants used by researchers as
follows:
1) The form of trace. For two coplanar conics C1 and

C2 (here, determinants of the matrices must be 1 through
normalization), two scalar invariants [4, 22] are given by

IC1C2 = Trace
(
C−1
1 C2

)
, IC2C1 = Trace

(
C−1
2 C1

)
(4)

2) The form of the generalized eigenvalues. The gener-
alized eigenvalues denoted by λ1, λ2, λ3 of two conics are
projective invariants as a set, up to a scale factor. So two
ratios from three generalized eigenvalues are the scalar
invariants [4, 10]. One simple choice is:

λ1/λ3, λ2/λ3 (5)

3) The form of real invariants. Gros and Quan [23] uti-
lized a generalizationmethod to obtain two real invariants
of two conics in which the matrices of the conics can be
multiplied by a scalar.

I1 =
Trace

(
C−1
2 C1

)
detC2

(
Trace

(
C−1
1 C2

))2
detC1

, (6)

I2 = Trace
(
C1w−1C2

)
detC1(

Trace
(
C−1
2 C1

))2
detC2

Note that Eq. 4 is closely related to Eq. 6. Detailed dis-
tinction in application is shown in Section 4.1 and more
specific discussion is stated in [23].

2.3 The Centre Circle constraint and the cuboid bound for
the optical center

Gurdjos et al. [16] proposed a Centre Circle theory to
explain the constraints imposed from a 2D homography
on the optical center. When a planar figure is the central
projection of another planar figure, the center of projec-
tion then lies on a spatial circle (called Centre Circle)
which is intersected by a sphere S (called Centre Sphere)
and a plane perpendicular to this intersection (called Cen-
tre Plane). The two equations determining the position of
the Centre Circle can be deduced from Eqs. (2) and (3)
respectively.
Owing to the Centre Circle constraint described above,

Cai [18] builds a geometric criterion to judge the com-
puted homography’s correctness, i.e., the Centre Circle
must appear near the camera center. This criterion actu-
ally includes two basic physical meanings: the principal
point should be near the image center and the focal length
should be limited by the prior knowledge of the lens.
Here, judging whether the camera centers lie in the geo-
metric cuboid bound can be divided into two steps. First,
judge whether the Centre Line intersected by the Cen-
tre Plane and the image plane passes through the given
square region. Second, if the first condition suffices, judge
whether the focal length varying with the changes in prin-
cipal point is in the given range (see Fig. 1). Thus, for a
cuboid bound, there are two controlling parameters: the
one denoting the radius of the square controls the varying
scope of the principal point and the other one denoting

Table 1 DoP and MNoS for all combinations of two unknowns

Comb bd, ef ab, cd, c(d)e(f) ac(d), bf ae(f), bc(e)

DoP 2, 2 2, 3 3, 4 4, 4

MNoS 4 6 12 16
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Fig. 4 Quadrangle ABCD and its self-polar triangle XYZ. The left figure is for the separate pair and the right is for the enclosing pair

the height of the cuboid controls the varying range of the
focal length.

3 Problem statements
Assume that the correspondences between two coplanar
conics and their images are given. The basic equations
about two conics and 2D homography are expressed by

C̃1 ≡ H−TC1H−1, C̃2 ≡ H−TC2H−1 (7)

where H denotes the homography. C1 and C2 are the
matrices of the two conics in the model plane. Symbol X̃
denotes the image of the object X in the model plane. The
symbol “≡” denotes the equivalence up to a scale factor.
Note that in the previous works [1, 5], C1 and C2

are totally known. Thus, there are 10 constraints on 8
unknowns in the process of computing homography and
10 constraints on 6 unknowns in pose estimation. By
counting unknowns, if C1 and C2 are partially known,
we can easily obtain the minimal condition of computing
homography, i.e., C1 and C2 have two unknown param-
eters and the equations provide 10 constraints on 10
unknowns. Although the equations can be easily writ-
ten, it is impossible to directly solve them due to the
complicated nonlinearity.
Let us reconsider this problem by observing Fig. 2. After

abandoning a global scale factor for simplicity, two gen-
eral coplanar conics C1 and C2 can be denoted by six
meaningful parameters: the eccentricities e1 and e2, the
displacements between the centers of two conics dx and
dy, the relative rotation θ , and the relative scale factor k
between two conics. In another way, C1 and C2 (that are
two ellipses here for simplicity) with six parameters are
expressed by the following equations:

x2 + axy+ by2 − 1 = 0, cx2 + dy2 + ex+ fy− 1 = 0 (8)

According to the number of prior conditions imposed on
two base conics, we classify two coplanar conics into six
classes which are two general conics, two Principal-Axis

Parallel (PAP) conics (i.e., a = 0), two Center Coaxial (CC)
conics (i.e., f = 0), two One Principal-Axis Superposed
(OPAS) conics (i.e., a = 0 and f = 0), two concentric con-
ics (i.e., e = 0 and f = 0 ), and two Principal-Axes Aligned
(PAA) conics (i.e., a = 0, e = 0, and f = 0). Formost of the
classes, we find that the quadrangle formed by four inter-
section points has different shapes and degrees of freedom
(DOF) (see Fig. 3 and the proof is provided in Appendix).
Such a classification not only gives us many geometri-
cal explanations, but also provides some conveniences in
further computing.

a

c

e f

d

b

or

or

Fig. 5Most of the quasi-separate and quasi-enclosing cases for two
conics and their associated lines. a, c, and e depict the quasi-separate
ellipses, hyperbolas, and an ellipse and a hyperbola respectively. The
dashed conic indicates the position of a half hyperbola and only the
other half hyperbola can be seen. b, d, and f depict the quasi-enclosing
ellipses, hyperbolas, and an ellipse and a hyperbola respectively



Cai and Wu IPSJ Transactions on Computer Vision and Applications           (2018) 10:14 Page 5 of 15

Table 2 PoC for two cases with four complex intersections

Conics cases Quasi-enclosing Quasi-separate

PoC 1, 4, 5, 8 1, 4

Based on the above analysis, we can propose an impor-
tant argument about the number of the unknowns and
given constraints as follows.

Proposition 1 A necessary and sufficient condition of
obtaining the world-to-image homography up to a trans-
formation for two coplanar conics is that four effective
constraints on six parameters are given.

Proof (⇒) Assume four effective constraints on the
above six parameters are given (the simplest form is to
give exact values of four parameters; the term “effective”
means that the four constraints must be independent and
different from the two constraints provided by geometric
invariance), we can use two scalar invariants of two con-
ics to establish two equations (be nonlinear in most cases)
of two unknown parameters. By solving them, we can
get all parameters. Thus, the four intersection points can
be obtained followed by the computation of homography.
(⇐) Assuming the homography up to a similarity transfor-
mation is given, we can compute back-projected points in
the model plane. Note that the quadrangle formed by four
intersection points of C1 and C2 actually has four DOF.
Since the four independent DOF imposed on the quad-
rangle are invariant under the similarity transformation,
we can obtain four equations in six unknowns, i.e., four
effective constraints on six parameters.

To further describe these four effective constraints, we
can divide them into two parts: conics class constraints
and additional constraints. Conics class constraints refer
to the constraints imposed on the conics class mentioned
above. Additional constraints refer to the constraints a
pair of coplanar conics still have after removing con-
ics class constraints. Moreover, the number of additional
constraints should be equal to the DOF of the quadran-
gle formed by four common points. Under the minimal
conditions, the number of constraints should satisfy the
following equation:

conics class + additional = 4 (9)

Proposition 1 and the above equation actually answer the
confusing question why one specific conics pattern can be
used to get the homography. For example, any two copla-
nar circles belong to OPAS conics which have two DOF.
Thereby, we have two conics class constraints and two
additional constraints (i.e., their eccentricities) which sat-
isfy the above equation about the minimal condition of

computing the homography. Two coplanar circles belong-
ing to OPAS conics have two unknown parameters, the
displacement dx and the scale factor k. As these two
unknowns can be computed by using projective invari-
ants, all parameters and the trapezoid formed by four
common points will be obtained. Adding the projective
invariants, (9) for coplanar circles can be expressed by

OPAS conics︸ ︷︷ ︸
2

+ additional︸ ︷︷ ︸
2

+ projective︸ ︷︷ ︸
2

= 6 (10)

Now, we discuss confocal conics [9] which belong to PAA
conics. As PAA conics already has three class constraints
and one DOF, it needs to be given one effective and addi-
tional constraint to compute the homography. Therefore,
the additional constraint for confocal conics is that two
conics are confocal. Ying and Zha [7] also propose a condi-
tion of computing homography for PAA conics: giving the
eccentricity of any one conic. This constraint could also
be considered as a specially additional constraint.
For concentric circles, the analysis is a little compli-

cated. Because of belonging to PAA conics, concentric
circles belong to the degenerate conics systemwith double
contact which cannot be explained by (9). On the con-
ics system with double contact, interested readers could
see [13] for the detailed properties. Here, we only give
the conclusion: any two degenerate conics with double
contact except concentric circles will result in a one-
parameter family of homographies with an uncertain
rotation parameter. For concentric circles, although the
computed homography also has one unknown rotation
parameter, the image of circular points is not influenced as
the unknown variable is just in a similarity transformation
under which the true homography is transformed into the
computed one.
Although this question has been explained in principle,

there still exist two problems that need to be solved. One is
how to choose the suitable form of invariants to solve two
unknown parameters and remove the ambiguous solu-
tions and the other is after calculating four intersection
points, how to automatically determine their correspon-
dences in the image to compute the correct homography,
especially for the case with complex intersections. These
two significant problems will be demonstrated in the next
two sections.

4 The ambiguous solutions of unknown
parameters

In this section, we focus on how to use the projective
invariants to compute two unknown parameters of a pair

Table 3 PoC for two cases with real intersections

Conics cases Two-real-inter Four-real-inter

PoC 1, 4 1, 5
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a b c d
Fig. 6 Four degenerate cases. a the simple-contact system; b the
three-point contact system; c the system with double contact; d the
system with four-point contact

of coplanar conics. To our knowledge, this idea is first
implemented by Gurdjos [10] to compute two unknown
parameters for two coplanar circles. Note that coplanar
circles belong to OPAS conics, whose configuration is
not general as their two parameters are equal to zero.
Because of the complexity of two general conics, some
new problems arise and Gurdjos’s method could not han-
dle them. Thus, we revisit this problem which actually
includes three sub-questions as follows:

• Geometric invariants involving a pair of conics have
various forms. Which form should be chosen to
establish the equations of the unknown parameters?

• Why ambiguous solutions occur?
• How to remove the wrong solutions?

Gros and Quan [23] reveal that all the mentioned invari-
ant forms in Section 2.2 are related to each other. They

also imply that the complexities of the four invariant forms
are different. Owing to that work, the first two questions
can be answered. The removing method based on the rea-
sonability of the intrinsic parameters is depicted in the last
subsection.

4.1 Computing unknown parameters using the real
invariant form

For the general conics C1 and C2 in (8), it is impossible to
obtain their cross ratios and the generalized eigenvalues
by using Matlab’s symbolic computation. Moreover, the
invariant form of the trace requires normalizing the deter-
minants of twomatrices, which will result in the fractional
power functions needing to be further changed. There-
fore, we finally choose the real invariants to compute the
two unknown parameters. After some simple calculations,
we have

I1 =
(
be2 − aef + 4bc + 4cd + f 2 + 4d

) (
4b − a2

)
(
4bc − a2 + 4d + 4b

)2 (11)

I2 =
(
4bc − a2 + 4d + 4b

) (
cf 2 + de2 + 4cd

)
(
be2 − aef + 4bc + 4cd + f 2 + 4d

)2 (12)

For different combinations of unknowns, the polynomial
functions have different degrees and solutions. For exam-
ple, if a, b, e, f are given, the two polynomials functions
are expressed by:

Fig. 7 Simulated seven conics in the model plane
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Table 4 Number of the residual PoC in theory. The symbol “⊗”
denotes that this situation does not exist

Conics classes PAA OPAS Concentric CC and PAP and general

Quasi-separate ⊗ 1 ⊗ 2

Quasi-enclosing 1 2 2 4

Two-real-inter ⊗ 1 ⊗ 2

Four-real-inter 1 2 1 2

(�cd + �d + �c + �)�
(�c + �d + �)2

= Ĩ1 (13)

(�c + �d + �)(�cd + �d + �c)
(�cd + �d + �c + �)2

= Ĩ2 (14)

where� denotes a real number. Substituting (�cd+�d+
�c + �) in (13) to (14), we have

(�cd + �d + �c)
(�c + �d + �)3

= Ĩ2/Ĩ21 (15)

It is obvious that (13) is a polynomial function with 2
degree and (15)’s degree is 3. Therefore, the maximum
number of solutions of the unknowns c and d is 6. Do
the similar manipulations and all results about degrees
of the polynomials (DoP), and the maximum number of
solutions (MNoS) are shown in Table 1.
Here, we do not pay more attention to obtain the exact

number of solutions of the polynomial equations for each
combination of two unknowns, because we experimen-
tally find that Matlab can directly solve these polynomial
equations in two variables, which allow us not to care
about the solving details. Notably, when some parame-
ters equal to zero (corresponding to the five non-general
classes mentioned in Section 3), the above polynomial
equations will be further simplified and the number of
solutions becomes smaller.

4.2 Reasons of the invariant ambiguity
It is easy to verify that the projective invariance is only a
necessary condition, not a sufficient condition for a pair
of plane conics. In other words, different pairs of copla-
nar conics may have the same projective invariants that
will result in the ambiguity of solving unknown parame-
ters. Now, we will explain the underlying reasons of the
ambiguous solutions in geometry and algebra.

Table 5 The two unknown parameters and the number of their
solutions

Conics C1 C2 C3 C4

C5 {a,b}, 4 {a,c}, 6 {a,f}, 12 {b,c}, 6

C6 {c,d}, 6 {b,f}, 6 {d,f}, 6 {e,f}, 4

C7 {b,d}, 4 {c,f}, 6 {b,e}, 6 {a,e}, 12

Table 6 Solutions of {c,d} for the conics pair {C1,C6}
Unknown paras c d

Correct − 0.499 − 4.491

Wrong1 − 14.933 − 0.698

Wrong2 14.122 − 0.817

Wrong3 1.635 − 1.529

Wrong4 − 1.101+0.297i 3.060−7.065i

Wrong5 − 1.101−0.297i 3.060+7.065i

Consider the projective property that two general conics
can be transformed into two PAA conics under a projec-
tive transformation (the direct conclusion in [24, pp.157]).
The equations of two PAA conics in the model plane up to
a global scale factor are:

x2 + by2 − 1 = 0, cx2 + dy2 − 1 = 0 (16)

The generalized eigenvalues of two PAA conics are:

λ1 = 1/c, λ2 = b/d, λ3 = 1 (17)

There is also a twofold ambiguity caused by the confu-
sion of λ1 and λ2. As pointed out in [23], two independent
invariants, λ1/λ3 and λ2/λ3, can be interpreted geomet-
rically by the above two cross ratios. Therefore these two
kinds of invariant forms arise from the uncertainty of
correspondence in geometry.
The real invariants are related to the invariants of

the generalized eigenvalues by the following equations
([23, pp.23]):

I1 = λ3/λ1 + λ3/λ2 + λ23/λ1λ2
(1 + λ3/λ1 + λ3/λ2)2

(18)

I2 = λ1λ2 + λ3λ
2
1/λ2 + λ3λ

2
2/λ1

(λ1 + λ2 + λ3)2
(19)

Note that in the above expressions, λ1 and λ2 can be
interchanged, which implies the real invariants conceal
the geometrical ambiguity. Moreover, the real invariants
also bring some new ambiguous solutions because of the
increase of polynomial complexity. Therefore, the ambi-
guity produced in solving real invariant equations can be
seen as a purely algebraic problem.

4.3 Ambiguity removal
Because of the invariant ambiguity, the conics whose
configuration is wrong could be projected to the image
of the correct conics. Thus, it is impossible to remove
them in theory. In other words, for one image of two
partially unknown conics, some ambiguous solutions are
projectively correct. However, the principle of remov-
ing the invariant ambiguity is the same as the principle
of removing the correspondence ambiguity described in
Section 2.3. Given a homography, the Centre Circle which
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Fig. 8 Conics corresponding to four real solutions of {c,d}

the camera center should lie in can be used to evaluate the
reasonability of the homography.

5 Computation of homography between totally
known conics and their images

After obtaining all parameters of the pair of conics, the
four intersection points of two conics on the model plane
and their projections can be computed. But consequently,
the problem of how to find the correct correspondences
arises. For real intersection points, people may manually
select the correct correspondences in the image as the
popular calibration tool does [25]. For complex intersec-
tion points without physical position, it is impossible to
directly find their correspondences in the image.
Rothwell et al. [5] point out that there are 24 ways to

match 4 image points to 4 object points. For real intersec-
tion points and complex intersection points, the possibili-
ties can be reduced from 24 to 4 and 8 respectively. Then,
they used several posterior rules to eliminate this ambigu-
ity. The similar argument is given in [1]. However, these
methods are only effective for estimating the pose as the
intrinsic parameters must be given. If we use N images of
object to calibrate the camera, there will be 8N combina-
tions to compute the intrinsic parameters. It is impossible

to verify them in terms of such posterior rules. Although
[6, 10] propose some methods to distinguish the circular
points from the four complex intersections of two circles,
it is still far away from the final solution to the general
case.
In this section, we pay more attention to analyze the

reasons of correspondence ambiguity and present the pos-
sibilities of correspondences (PoC) in theory for different
cases of conics. In this way, the number of PoC we must
deal with decreases obviously. Then, based on the Cen-
tre Circle constraint (as described in Section 2.3) which
provides the geometrical explanation of the world-to-
image homography in perspective transformation, we set
a cuboid bound for the optical center to remove wrong
correspondences, no matter whether the intersections are
complex or real.

5.1 Possibilities of correspondences for different cases
Two coplanar conics with four distinguished intersec-
tion points could be divided into four cases: (1) quasi-
enclosing conics with four complex intersections, (2)
quasi-separate conics with four complex intersections,
(3) intersecting conics with four real intersections, and
(4) intersecting conics with two complex and two real

a b
Fig. 9 Centre Lines computed from 4 PoC for {C1, C6} and the square region of the principal point. a is depicted with the correct parameters while
b with the wrong parameters
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Table 7 Range of the focal length computed from four PoC for
each solution of {c,d}

PoC 1 2 3 4

Correct paras 972.5–1387.3 0–4.7 0–12.3 0–43.2

Wrong paras 0–10.2 0–3.0 0–2.2 0–4.3

intersections. Here, the terms “quasi-enclosing” and
“quasi-separate” arising from the geometric properties of
two conics will be explained later. We start our analysis
from the cases with four complex intersections (including
(1) and (2) cases above) and the other two cases will be
demonstrated last. Denote these four intersection points
by A, B, C, D and their correct image points by Ã, B̃, C̃, D̃.
The PoC for four complex points mapping to image points
are given by [5]

⎡
⎢⎢⎣

Ã
B̃
C̃
D̃

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣
A
B
C
D

⎤
⎥⎥⎦

⎡
⎢⎢⎣
A
B
D
C

⎤
⎥⎥⎦

⎡
⎢⎢⎣
B
A
C
D

⎤
⎥⎥⎦

⎡
⎢⎢⎣
B
A
D
C

⎤
⎥⎥⎦

⎡
⎢⎢⎣
C
D
A
B

⎤
⎥⎥⎦

⎡
⎢⎢⎣
C
D
B
A

⎤
⎥⎥⎦

⎡
⎢⎢⎣
D
C
A
B

⎤
⎥⎥⎦

⎡
⎢⎢⎣
D
C
B
A

⎤
⎥⎥⎦

(20)

where either {A,B} or {C,D} is a pair of conjugate complex
points. The above possibilities are obtained by only using
the projective property that all complex conjugate pairs
should be projected to conjugate pairs, i.e., the real lines
which the complex points lie in still correspond to real
lines. Given all possibilities of the numbers 1–8 from left
to right for analyzing convenience, we find that the gener-
ation of these eight possibilities can be concluded by three
different states as follows.

• The correspondences of real lines. If the
correspondences of two real lines in the quadrangle
are clear, we can distinguish the PoC 1–4 from the
PoC 5–8.

• The adjacency of four complex intersections.
Assuming that there indeed exists the adjacent
relationship between the complex points no matter
their order is clockwise or anti-clockwise, the PoC
1,4,5,8 can be distinguished from the PoC 2,3,6,7 if
this adjacency is known.

• The order of points around the conic. The PoC
1,3,5,7 and 2,4,6,8 can be respectively treated as the
clockwise order and the anti-clockwise order.

Next, we will show how to utilize these three states to
further reduce the number of PoC.

5.2 The adjacency of four complex points
Here, we will show that the adjacency of four complex
intersection points can be found. Let us turn back to
observe the geometric relationships of the separate conics
and the enclosing conics both of which have four com-
plex intersections (see Fig. 4). The quadrangle ABCD has
two real lines AB and CD. Two complex lines AD and
BC intersect at the real vertex Z of the self-polar trian-
gle XYZ. The complex lines BD and AC intersect at the
real vertex Y. Assume the two conics are in visible half-
space segmented by the principal plane through the cam-
era center parallel to the image plane (e.g., two ellipses).
Thus, their four complex intersections also should be in
visible half-space and the possible points lying in invis-
ible half-space are X and Z.1 Because the real point Y
always lies inside one conic, the line AC and BD inter-
sect at Y both in the world plane and in the image.
This implies that A should be adjacent to D, not to C.
Therefore, as the position of the vertex Y intersected
by two complex conjugate lines is projectively invariant,
we obtain the adjacency of four complex intersections.
Consequently, the number of PoC for these two cases is
reduced to 4.

5.3 The correspondences of two real lines
The correspondence problem of two real lines is previ-
ously investigated in [6, 10]. Specifically, they propose to
divide two coplanar circles with four complex intersec-
tions into two cases: the separate case and the enclosing
case. Note that the terms “separate” and “enclosing” are
visually suitable for a pair of circles or ellipses since they
are closed and finite in Euclidean geometry. However,
to the visually infinite conics, some adjustment should
be given. Thus, we slightly extend the previous works to
define the term “quasi-separate” and “quasi-enclosing” to
cover all conics cases with four complex.

Definition 1 For two coplanar conics C1 and C2 with
four distinguished complex intersections, let the two real
lines consisted of the two pairs of complex conjugate points
be l1 and l2. We name

(i) C1 and C2 are quasi-separate if and only if they lie on
the adjacent regions divided by l1 and l2.

Table 8 The number of the computed homographies satisfying
the cuboid constraint

Conics C1 C2 C3 C4 C7

C1 ⊗ 2 2 2 1

C2 2 ⊗ 4 2 1

C5 1 1 2 2 1

C6 1 1 1 1 2
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Fig. 10 The correct image (blue and postfix is “-i”) of {C1, C7} and their wrong re-projection (red and postfix is “-p”) from the PoC 2, 3, 6, 7 in Eq. 20

Fig. 11 Performance of different intrinsic parameters vs. the noise level of the image points

a b
Fig. 12 a One real image of the model plane. b Its rectified metric image
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Table 9 Two solutions of the translation parameters

Conics pair {E1, E2} {E1, P1}

Value Mean Theoretical Mean Theoretical

dx 8.001 8 2.999 3

dy 5.998 6 4.996 5

d′
x 8.500 8.499 − 3.490 − 3.496

d′
y − 1.744 − 1.747 3.623 3.618

(ii) C1 and C2 are quasi-enclosing if and only if they lie
on the same region or the opposite regions divided
by l1 and l2.

Figure 5 gives some examples of the quasi-separate and
the quasi-enclosing conics. For example, Fig. 5e depicts
an ellipse and a half hyperbola. Their four imaginary
intersections lie on two real lines, only one of which sep-
arates two conics. Thus, the correspondences of two real
lines can be distinguished. The correct PoC only ranges
from 1 to 4 or 5 to 8. Furthermore, as Wu proves for a
pair of circles in [6], the above relationships are invari-
ant under a quasi-affine transformation [26]. In other
words, the real line between two conics can be distin-
guished for the quasi-separate case. Thus, the number
of PoC for the quasi-separate conics is reduced to 2
(see Table 2).
After analyzing the cases with four complex intersec-

tions, it is not difficult for us to obtain the PoC for the
other two cases. For the case with two real and two com-
plex intersections, as both the adjacency of four points and
the real line passing through two real points can be distin-
guished, the correspondences only have two possibilities
(see Table 3). For the real case, it is easy to verify that the
PoC B, C, D, A and D, A, B, C will result in the wrong cor-
respondences of the self-polar triangle XYZ followed by the

wrong re-projection image (see Fig. 4) Therefore, the num-
ber of PoC for the real case is finally reduced to 2.

5.4 The order of four points and geometric symmetry
The notion of adjacency or order is not existing in pro-
jective geometry as any complex point does not have the
physical position. Thus, the order of four complex points
cannot be distinguished and the PoC that arose from the
order must be considered in general cases. Tables 2 and 3
together show the PoC of four intersection points in four
general conics cases. Now, we will reveal the relation-
ship between PoC and the geometric symmetry of the
quadrangle ABCD.
The influence of centrosymmetric to PoC is obvious.

When the quadrangle ABCD is centrosymmetric, the PoC
ABCD and CDAB will generate the same homographies
no matter the intersections are complex or real. As a
result, we can pick up 2 PoC out of 4 to compute the
homography.
When the quadrangle is axisymmetric, such as the

trapezoid formed by two OPAS conics (see Fig. 2), the sit-
uation is a little complicated. Axisymmetry which lets the
PoC ABCD and BADC generate the same homography
can only influence the three cases without four real inter-
sections. For the four-real-intersecting case, there is still 2
PoC needed to be considered.
The rectangle formed by PAA conics is both centrosym-

metric and axisymmetric. Thus, for two enclosing PAA
conics, all 4 PoC will generate the same homographies. It
is also worth noting that, for a geometrically symmetric
quadrangle, the number of the PoC is reduced at the cost
of the ambiguous extrinsic parameters.

5.5 Summary
After analyzing the three states which influence the PoC,
the correspondence ambiguity of four intersections could
be concluded in three points as follows:

a b
Fig. 13 Centre Lines computed from four PoC and the square region of the principal point. a is depicted with the correct parameters while b with
the wrong parameters
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Table 10 Range of the focal length computed from two PoC for
the correct and wrong parameters

PoC 1 2

Correct paras 796.3.0–926.7

Wrong paras 76.3–132.6 127.4–160.0

• The adjacency of four intersections for all cases of
two coplanar conics can always be distinguished.

• The correspondences of real lines can be
distinguished for the quasi-separate case and the
two-real-intersecting case.

• For the geometrically symmetric conics, the number
of PoC often can be further reduced.

Compared to the previous works, the number of the
PoC we must deal with in theory declines obviously. For
the residual PoC, we adopt the two steps described in
Section 2.3 to judge whether the Centre Circle corre-
sponding to one computed homography intersects with
the cuboid bound around the optical center. Our exper-
iments will verify this method can remove the invariant
ambiguity and the correspondence ambiguity simultane-
ously.
The pseudo code of whole calibration method for two

coplanar conics is illustrated in Algorithm 1.

5.6 Degenerate situations
After discussing the general case of two conics, we now
analyze in which conditions the degenerate cases will
occur. There are four types of degenerate conics sys-
tems which are the simple-contact system, the three-point
contact system, the system with double contact, and the
system with four-point contact [24, pp.158-160]. As the
degenerate situations rarely happen in practice, we only
give the conclusion about whether the degenerate conics
can be used to compute a homography.
For the simple-contact conics system (see Fig. 6a), two

common tangents l1 and l2 are coincident. But four points
intersected by two conics and the other common tangents
l3 and l4 respectively can be always obtained. In the similar
way, for the three-point contact system (see Fig. 6b), two
common points and two points on the tangent l4 can be
obtained. Thus, for the above two degenerate cases, the
complete homography can be computed.
For the system with double contact (see Fig. 6c), only

three points including two common points and the point
intersected by the tangent l3 and l4 can be distinguished
from the object plane and its image. The undetermined
thing is the correspondence of another general point P
of one conic which has one DOF. As a result, a one-
parameter family of homographies will map this degen-
erate pattern to its image (interested readers could see
the detailed derivation in [13]). Similarly, for the system

Algorithm 1Calibration procedure for two coplanar conics
Require: Given 4 parameters of C1 and C2 in the model

plane;
Capture n images of the model plane;

1: Obtain projective invariants I1 and I2 with 2 variables
using Eq. (11) and (12);

2: for i = 1 to n do
3: Extract conics C̃1 and C̃2 in the image.
4: Compute the values of projective invariants of C̃1

and C̃2.
5: Solve polynomial equations to get 2 unknown

parameters xj, yj.
6: for real xj, yj do
7: for each PoC in Table 4 do
8: P1: Compute 4 intersection points.
9: P2: Compute the homography.

10: P3: Remove the ambiguous solutions using
CC constraint:

11: P3.1: Compute centre line (CL).
12: if P3.2: Does CL intersect image center

area? then
13: P3.3: Compute the focal length.
14: if F3.4: Is focal length in a reasonable

range? then
15: This solution is correct. Save them.
16: else
17: This solution is incorrect.
18: end if
19: else
20: This solution is incorrect.
21: end if
22: end for
23: end for
24: end for
25: Using the correct homographies to compute the

intrinsic parameters

with four-point contact, any line t passing through the
common point has one DOF. The points M and N as the
intersections of conics and t have one common unknown.
Subsequently, the other two points intersected by the
common tangent and the tangents passing throughM and
N still have one unknown. As a result, an incomplete
homography with one parameter can be obtained.

Table 11 Comparison of three results

Method fu fv u0 v0

Calibration toolbox 887.2 893.3 512.0 416.4

Ours using {E1, E2} 883.3 875.3 519.7 388.6

Ours using {E1, P1} 891.8 884.0 520.8 396.9
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Fig. 14 Three images with the added AR teapot

6 Experiments
6.1 Computer simulations
In our experiments, the simulated camera has the follow-
ing intrinsic parameters: fu = 1200, fv = 1190, u0 = 500,
and v0 = 400. The image resolution is 1024 × 768. The
model plane is composed of a hyperbola and six ellipses
as shown in Fig. 7, which actually covers all the cases in
Table 4. C1, C2, C3, and C4 are four concentric ellipses
centered at (0, 0). The centers of C5, C6, and C7 are
(80, 0), (90, 20), and (− 120, 20) respectively. The radii of
all conics are not listed here as the combination relation-
ship between two of them is clear in Fig. 7. Project the
pattern (approximately 500 points evenly extracted from
each ellipse) to the simulated image planes at several differ-
ent positions. The conic fitting algorithm presented in [27]
is used to obtain the equations of the projected conics.

Performance w.r.t the invariant ambiguity We first
pick up several pairs of conics to compute the unknown
parameters. The results of the number of their solutions
are shown in Table 5. Note that all the numbers of the
solutions are equal or less than the MNoS shown in
Table 1.
For the general conics pair {C1,C6}, the solutions of

{c, d} are shown in Table 6. After removing the last two
complex solutions, the conics corresponding to the other
four solutions of unknown parameters are depicted in
Fig. 8. The first solution is correct. Both the third and
the fourth solutions do not satisfy the perspective rela-
tionship. The second one which we have to deal with is
meaningfully wrong. We set the region parameter of the
principal point and the range parameter of the focal length
50 and 20% respectively. Using these two different solu-
tions to compute the homographies, there is only one
correct Centre Circle passing through the cuboid. There-
fore, the correct unknowns, PoC, and homography can be
obtained. Detailed results are shown in Fig. 9 and Table 7.

Performance w.r.t the correspondence ambiguity
Assume the conics are totally known. For all the PoC
shown in Tables 2 and 3, the number of the corresponding
homographies satisfying the cuboid constraint is shown in
Table 8.

The above results verify the correctness of Table 4
and our propositions. For instance, five pairs of con-
ics {C2,C3}, {C6,C7}, {C1,C2}, {C2,C6}, and {C1,C7} are
quasi-enclosing and belong to PAA, OPAS, concentric,
PAP, and general classes of conics respectively. In the orig-
inal eight PoC of four complex points, only the projections
of the conics from the residual four PoC in Table 7 are cor-
rect. The example of the pair of conics {C1,C7} is shown
in Fig. 10. Then, we apply the cuboid constraint to verify
the residual four PoC. For the geometrically asymmetrical
conics {C2,C6} and {C1,C7}, only one homography from
the correct PoC satisfies the cuboid constraint. For the
geometrically symmetrical conics {C2,C3}, {C6,C7}, and
{C1,C2}. The homographies obtained from two or four
PoC of four complex intersections are same and their Cen-
tre Circles all pass through the cuboid at the cost of the
ambiguous extrinsic parameters. Thus, we can choose any
one PoC to compute the correct homography.

Performance w.r.t the noise level The Gaussian noise
with mean 0 and standard deviation ranging from 0.3 to
1.5 is added to the projected image points. We perform
100 times independent experiments to solve camera cal-
ibration with three pairs of conics {C1,C6}, {C2,C5}, and
{C3,C4}. The averaged results are shown in Fig. 11. Note
that the largest pair of conics {C2,C5} has the least errors,
which implies that the larger the size of conics, the better
the anti-noise performance.

6.2 Real images
Complete camera calibration The first real experiment
is run to compute the complete intrinsic parameters using
the proposed algorithm with the following setup:

• Print a model plane with two general ellipses and a
parabola as shown in Fig. 12. The left ellipse (denoted
by E1) can be obtained by rotating the ellipse

Table 12 Comparison of the focal length computed by our
method and the Camera Calibration Toolbox

Method Ours for (a) Ours for (b) Ours for (c) Calibration toolbox

f 3325.28 3870.98 3183.23 3255.14
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x2/16 + y2/9 = 1 30° anti-clockwise. The equation of
the right ellipse (denoted by E2) is
(x − 8)2 /1 + (y − 6)2 /4 = 1. The equation of the
parabola (denoted by P1) is y − 5 = 3

7 (x − 3)2.
• Use a CCD camera (Point Grey FL2-08S2M-C) with

4-mm lens (uTron FV0420) to take 12 photos of the
model plane. The image resolution is 1024 × 768.

• Use Canny operator to detect the edge and
Fitzgibbon’s conic fitting method [27] to obtain the
conics.

First, we compute the unknown translation parame-
ters dx and dy for two conics pairs {E1,E2} and {E1,P1}
respectively. Here, four priori conditions that include the
eccentricities of two conics, the relative rotation, and the
relative scale factor between two conics are given. The
two pairs of real solutions for two conics pairs are listed
in Table 9. Note that the first group of solution is correct
while the second one is wrong. The mean value of every
solution is very close to its theoretical value.
We then applied the cuboid constraint with the size

parameters 50 and 20% to remove the two kinds of ambi-
guities in the process of computing homography. For each
solution of the unknown parameters of the conics pair
{E1,E2}, the computed Centre Lines from four PoC are
shown in Fig. 13. Note that for each case, only two Centre
Lines pass through the given square region of the principal
point. Table 10 further shows the ranges of the focal length
computed from the above two PoC. Finally, only one PoC
obtained from the correct parameters satisfies the cuboid
constraint.
After obtaining the homography for each image, the

intrinsic parameters are computed. To verify the accu-
racy of our method, we also use the Camera Calibration
Toolbox [25] to calibrate the same camera. In addition, to
robustly extract the chessboard corner, we refer to the lit-
erature [28] which shows the better performance under
severe distortion or illumination. The results are shown
in Table 11. The metric rectification result of the depicted
image is shown in Fig. 12b.

Focal length calibration and AR The second experi-
ment focuses on a specific AR application in practice.
There is a round box on a table. Put a printed ellipse

on anyplace of this table (see Fig. 14). Thus, an ellipse
and a coplanar circle form PAP conics (shown in Fig. 3)
on the table plane. The semi-major axis and the semi-
minor axis of the ellipse is 4 cm and 2 cm, respectively.
The radius of the bottom circle of the box is 3.25 cm.
With these four known parameters, we can compute the
unknown translations between the centers of two conics,
followed by the homography between the table plane and
one image. Three images captured by an iPhone 8 are
shown in Fig. 14. Note that the ellipse positions in three

images are different. We still use the above method to
extract the conics (colored in pink and cyan respectively)
in the image. Assuming the principal point is given on
the image center, here we only calibrate the focal length
using the computed homography from each image indi-
vidually. This is because the slight offset of the principal
point to image center has very little impact on the results
of focal length calibration and AR effects. The calibra-
tion results from three images and the Camera Calibration
Toolbox are shown in Table 12. After obtaining the intrin-
sic parameters, the pose of every ellipse can be estimated
and a virtual teapot with its local coordinate system are
drawn. Constructing a moving AR marker with an ellipse
shows the practical use of the proposed method, even if
under the case that the camera has a zoom lens.

7 Conclusions
In this paper, a two-step method is developed to give a
unified explanation of camera calibration based on copla-
nar conics. We also display a particular description of the
invariant and correspondence ambiguity problems exist-
ing in the proposed method. Based on the analysis of the
solutions of residual ambiguity in various cases, the wrong
homographies can be removed by setting a cuboid bound
for the camera center for each image and we can directly
obtain the unambiguous calibration results. Furthermore,
as the natural link between various conics patterns has

Fig. 15 Two PAP conics and the circle passing through their four
intersection points
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been established, readers could get a full comprehension
of the conics-based calibration.

Appendix: Proof of Fig. 3
In this appendix, we use analytic geometry knowledge to
verify the shape of the quadrangle formed by four inter-
section points of two conics for every case shown in
Fig. 3.
See Fig. 15. C1 and C2 are two PAP conics whose axes

are parallel. A, B, C, and D are four intersection points.
Now, we will proveD is on the circumcircle defined by the
points A, B, and C.
The isogonal conjugate of the circumconic C1 with

respect to the triangle ABC is the line l1. Meanwhile, the
isogonal conjugate of C2 with respect to the triangle ABC
is the line l2. For a given triangle, the direction of the isog-
onal conjugate line of a circumconic is only related to the
direction of the axes of the circumconic. Therefore, l1 and
l2 are parallel. The isogonal conjugate of the point D as a
common point of C1 and C2 will be the point at infinity
intersected by l1 and l2. Moreover, as the isogonal conju-
gate of the circumcircle with respect to the triangle ABC
is the line at infinity, Dmust be on the circumcircle.
For OPAS conics, as both of them are axisymmetric,

the four intersections must be axisymmetric. Thus, the
quadrangle formed by these four intersections can only
be a trapezoid. In the similar way, two concentric conics
are centrosymmetric, so are their intersections. Thus, the
quadrangle can only be a parallelogram. For PAA conics,
the quadrangle should be axisymmetric and centrosym-
metric simultaneously. Thus, it is a rectangle.

Endnote
1 This is an experimental conclusion and cannot be

proved in strict mathematics
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