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Abstract

Gait is an important biometric trait for identifying individuals. The use of inputs from multiple or moving cameras
offers a promising extension of gait recognition methods. Personal authentication systems at building entrances, for
example, can utilize multiple cameras installed at appropriate positions to increase their authentication accuracy. In
such cases, it is important to identify effective camera positions to maximize gait recognition performance, but it is
not yet clear how different viewpoints affect recognition performance. This study determines the relationship
between viewpoint and gait recognition performance to construct standards for selecting an appropriate view for

gait recognition using multiple or moving cameras. We evaluate the gait features generated from 3D pedestrian
shapes to visualize the directional characteristics of recognition performance.
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1 Introduction

Individual identification is a core problem in the com-
puter vision and biometrics fields. A particularly active
area of study is the identification of individuals for security
purposes using vision sensors placed in distant positions
(e.g., security cameras). Face recognition [1] is a typical
instance that achieves great success due to its practical
recognition performance [2]. However, face recognition is
notably difficult when the quality of facial features is insuf-
ficient, for example, due to the person looking down or to
low-resolution input images.

Gait recognition [3], i.e., the identification of individuals
from their walking styles, is another technique that offers
promising solutions [4] for applications that use security
cameras, which capture pedestrians from distant posi-
tions. In particular, silhouette-based gait features [5, 6],
which use silhouettes of people walking, achieve state-of-
the-art performance when using distant views (i.e., low-
resolution images) as the input, compared with model-
based approaches [7, 8] that fit human shape models.
Because of its suitability for security camera applications,
silhouette-based gait recognition is occasionally used for
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forensics [9]. To improve performance, gait recognition
can be combined with other biometric features [10] such
as face images [11, 12].

One promising extension of gait recognition is to
use inputs from multiple or moving cameras. Personal
authentication systems at building entrances, for exam-
ple, can use multiple cameras installed in appropriate
positions to increase their authentication accuracy (such
as “biometric tunnels” [13]). Similarly, moving cameras
(e.g., cameras installed on drones) are expected to provide
a novel type of security that can actively detect peo-
ple behaving suspiciously by capturing pedestrians from
different viewpoints, leveraging the recent developments
in vision-based tracking [14]. In both cases, designating
effective camera positions for gait recognition is required
to maximize performance.

To date, a few studies have attempted to study the
most effective method of selecting camera positions by
comparing gait recognition performance from multiple
viewpoints [15-18]. However, these studies used a limited
number and variety of viewpoints (e.g., only horizontal
views [15, 16, 18]), and it remains unclear how different
viewpoints affect recognition performance.

This study aims to reveal the relationships among view-
ing direction, distance, and silhouette-based gait recog-
nition performance using systematic experiments to con-
struct standards for the selection of views for multi- or
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moving-camera for silhouette-based gait recognition. In
particular, we focus gait energy image (GEI) [5], which
is known as a simple yet effective feature for gait recog-
nition. GEI is often used as a baseline in performance
evaluations of silhouette-based gait recognition [4], and
most appearance-based gait features (e.g. [6, 19, 20]) are
designed as extensions of GEI Because it is difficult to
capture pedestrians from every direction and distance
simultaneously, we used multiple cameras to reconstruct
the 3D shapes of people walking to synthetically generate
their gait features from various directions and distances.
We then visualized the directional characteristics of the
recognition performance by evaluating the generated gait
features.

Given the directional characteristics, we can estimate
the gait recognition performance from a given position;
thus, these characteristics can be used for general pur-
poses that involve the selection of camera positions for
silhouette-based gait recognition. To demonstrate the
practical application of the performance characteristics,
we introduce a simple yet effective approach for person
recognition that combines gait features observed from
multiple viewpoints.

Contributions: The contribution of this paper is to
investigate the effect of direction and distance on the
performance of silhouette-based gait recognition through
systematic experiments. Our study constructs a standard
for selecting the view for multi- or moving-camera gait
recognition using GEIs.

2 Multi-camera gait recognition

The directional characteristics of gait recognition pro-
posed in this paper are intended to be used for practi-
cal gait recognition scenarios using multiple or moving
cameras. We therefore first introduce a particular multi-
camera gait recognition scenario.

Multi-camera gait recognition is intended to be used
in practical scenarios such as the authentication of peo-
ple at building entrances. The cameras are installed at
multiple locations to simultaneously capture pedestrian
video sequences. Similar to the traditional gait recognition
techniques using security cameras, by registering gait
features from similar viewpoints beforehand, the gait fea-
tures extracted from multi-camera images can be used for
authentication tasks. Moving-camera gait recognition is
an asynchronous version of multi-camera recognition. A
moving platform such as a drone captures multiple video
sequences from multiple viewpoints while hovering and
changing the position of the camera.

Open problems still need to be solved to achieve gait
recognition in a practical environment, where pedes-
trians are often placed against complex backgrounds
and occlusions, and display a large variation in walking
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styles. Pedestrian detection, tracking, and segmentation
are common fundamental problems in silhouette-based
gait recognition. To apply our directional characteristics,
the direction of the pedestrian has to be estimated in
a preprocessing stage. In addition, pedestrians’ walking
speed, baggage, clothes, and other features change their
silhouettes.

State-of-the-art human detection approaches [21, 22],
which include processes for estimating the person’s posi-
tion, direction, and pose, can be applied in the prepro-
cessing step of gait recognition in a practical environ-
ment. Approaches for estimating human body shapes [23]
and semantic segmentation [24] can facilitate the auto-
matic segmentation of pedestrians for appearance-based
gait recognition using pedestrian silhouettes. Meanwhile,
we can employ depth cameras to acquire accurate seg-
mentation for some cases. In addition, recent studies on
gait recognition, which tackle practical problems such
as speed transition [25], clothing [26], and baggage [27],
show promising performance when pedestrian silhouettes
are available.

On these state-of-the-art techniques, this study assumes
that the preprocessing stage can be performed properly
to acquire pedestrian silhouettes. Once the pedestrian
silhouettes and their direction have been obtained, the
directional characteristics constructed in this study pro-
vide a useful measure for designing camera positions.

3 Experimental settings

3.1 Gait feature generation

We generate gait features viewed from various directions
and distances to investigate the directional characteristics
of silhouette-based gait recognition. This is a challeng-
ing task when using physical cameras; thus, we apply a
semi-synthetic approach using the 3D shapes of pedestri-
ans. The 3D shapes are reconstructed as visual hulls using
videos captured by 24 synchronized cameras installed
around a treadmill by Muramatsu et al. [28] and converted
to surface models by Ikeda et al. [29].

Silhouette sequences of pedestrians are computed by
projecting the 3D shapes onto virtual cameras located
at various viewpoints around the 3D shapes. The posi-
tion of the virtual cameras is described by a vertical
angle 6, a horizontal angle o, and a distance d (see
Fig. 1). The view direction is designated so that the opti-
cal axis faces the pedestrian. GEIs are then computed
as an averaged image of the height-normalized silhouette
sequences created from 3D shapes during one walking
period.

3.2 Omnidirectional gait feature dataset

We used the 3D pedestrian shapes of 97 subjects collected
in [28]. The sequences from three walking periods are
available for each subject (291 periods in total). A GEI is
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Fig. 1 Definition of virtual camera position. 6, &, and d denote vertical angles, horizontal angle, and distance, respectively

generated for each walking period from each subject by A total of 1440 virtual cameras are generated from 36 hor-

changing the position of the virtual cameras as follows: izontal, 10 vertical, and 4 distance variations. We assume
a weak central projection at a distance of d = 5 m.
e Vertical angle 6 from 0° to 90° at 10° intervals. Virtual views at distances of d = 10,20,40 m are there-
Horizontal angle o from 0° to 350° at 10° intervals. fore obtained by lowering the resolution of the silhouette
Distance d of 5, 10, 20, and 40 m, where the sequences at d = 5 m. Figure 2 illustrates the relationship
resolution of the virtual cameras is 400 x 300 pixels between the distance d and the silhouette resolution when

and the vertical field of view (FOV) is 53°. the vertical angle is 0°.

Silhouette height
GEI
at 8 = 0° [px]

98

d=10m 49
d=20m 24
d=40m 12

Fig. 2 Distance d and silhouette resolution. Relationship between the distance and the silhouette resolution when the vertical angle is 0°
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Fig. 3 Relationships among EER (%), viewing direction (e and 6), and distance d. The scale of the legend changes among the charts because the
performance varies widely depending on the distance.ad =5m.bd =10m.cd =20m.dd =40m

4 Directional characteristics of gait recognition
Using gait features viewed from various viewpoints, we
evaluated the recognition performance to ascertain the
direction- and distance-related characteristics.

4.1 Evaluation method

According to the convention, we computed the equal error
rate (EER) for visual recognition performance. The EER
is obtained from the false rejection rate (FRR) and the
false acceptance rate (FAR), which are calculated from a
dissimilarity matrix among gait features. For each view-
point, we created a dissimilarity matrix based on the
L2 norm distance between pairs among 291 GEIs (3
walking periods for every 97 subjects). The EERs for
all 1440 viewpoints were obtained from the distance
matrices.

4.2 Results

Figure 3 visualizes the change in the EER with various view
directions at distances of d = 5,10, 20, and 40 m, where
a smaller EER indicates better performance. Table 1 sum-
marizes the EERs at three vertical angles 6 = 0°,50°, and

Table 1 Summary of the directional characteristics of
recognition performance (distance d = 5 m)

Vertical angle Horizontal angle

a=0° a = 90° o = 180°
(front) (side) (back)

6 = 0° (horizontal view) 240 2.75 2.56

0 =50° 550 334 275

6 = 90° (top view) 6.53 344 6.52
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Fig. 4 Relationship between EER (%) and distance. Horizontal angle is fixed at & = 0° (front view)
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90° at d = 5 m. The visualizations illustrate the following
tendencies:

e Small vertical angles 0 (e.g., 0°): better performance is
achieved when the horizontal angle « is
approximately 0° or 180° (i.e., front or back view).

e Medium 6 (e.g., 50°): better performance is achieved
when « is approximately 180° (i.e., captured from the
back).

e Large 6 (e.g. 90°): better performance is achieved
when o is approximately 90°, despite a deterioration
in overall performance.

We also visualize the relationship between the EER and
distance in Fig. 4. The change in performance is small
when the viewpoints are closer than d = 10 m. Beyond

d = 20 m, the deterioration in performance is approxi-
mately linear to the distance.

4.3 Discussion

4.3.1 Causes of directional characteristics

We further investigate the directional characteristics of
recognition performance, which show different tenden-
cies among viewing directions. Example GEIs at small
(@ = 0°) and medium (@ = 50°) vertical angles are
shown in Figs. 5 and 6. The differences between the front
(¢ = 0°) and back (¢ = 180°) views are small when the
vertical angle is small (cf. Fig. 5). At a medium vertical
angle, however, the GEIs from the back view (Fig. 6b) show
the head shape more clearly than the front view (Fig. 6a).
This is considered to be caused by a characteristic of the

Front view

small when the vertical angle is small. a Front view. b Back view

Back view

Fig. 5 Differences between GEls from front and back views (6 = 0°). The differences between the front (& = 0°) and back (¢ = 180°) views are
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Front view

front view (a)

Fig. 6 Differences between GEls from front and back views (6 = 50°). The GEls from the back view (b) show the head shape more clearly than the

Back view

human shape, which means that some people walk with a
stoop. In this case, better performance is achieved using a
back view at a medium vertical angle.

The recognition performance in top-view (6 = 90°)
situations varies due to the height normalization of the
silhouette sequences during GEI computation. A GEI is
generated by averaging silhouette sequences, after pre-
liminary normalization by the height of the silhouette
to the alignment. However, this process has unexpected
results when using top views, as shown in Fig. 7. When
the horizontal angle « is 0° (see Fig. 7a), the silhouettes of
the arms and legs move up and down in the image plane.
The unstable GEIs caused by the changes in the height of
the silhouette while walking result in worse performance
when « is 0° and 180°.

Resolution: State-of-the-art security cameras are
equipped with high-resolution cameras. Although our
experiment used virtual cameras with a 400 x 300-
pixel resolution and a 50° FOV, we can interpret our
experimental results as equivalent to situations using
high-resolution security cameras, where we assume a
wide-angle camera with 4K resolution and a 90° vertical

FOV. According to Fig. 4, when d < 10 m, the EER is less
than 5% if we select the capturing altitude so that 6 < 40°.
Assuming a weak central projection, the gait features
obtained by the virtual cameras at a distance of d = 10 m
are equivalent to those obtained from approximately 20 m
by the high-resolution cameras. Similarly, when d = 20 m
(equivalent to 40 m distance in the high-resolution
camera), the EER is less than 8% if 6 < 50°.

Accuracy of 3D pedestrian models: This study used
3D pedestrian models, which were originally created in
[28], to model the view-dependent transformation of gait
features and to generate gait features from various view-
points. Although it is difficult to evaluate the accuracy of
3D shapes directly because of the difficulty of acquiring
the ground truth person shapes, we evaluated the error
metrics related to the reliability of the 3D shapes. The 3D
models are visual hulls created by the volume intersec-
tion method, in which the shape errors occur in concave
areas. The concave areas vary in size according to the
human pose, e.g., concave areas are large when the person
is standing straight and small when the person is spread-
ing his arms. We investigated the effect of the concave

Horizontal angle & = 0°. b Horizontal angle & = 90°

a Silhouette sequence with height normalization

SNl

Horizontal angle a = 0°.

Silhouette sequence with height normalization

EIFIEY-ED

Horizontal angle « = 90°.

Fig. 7 Effect of height normalization. The effect of height normalization generating GEls from top views (i.e,, vertical angle § = 90°) sequences. a
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areas by measuring the volume sizes in the frames in each
3D video. The average standard deviation of the 3D vol-
ume size (i.e., the number of occupied volumes) for each
sequence was 1.77% over the average volume size. Assum-
ing that the error is uniformly distributed, it leads to 0.59%
error in the length of a dimension such as the height,
width, and depth. Because this is less than one pixel in
the images captured from 5 m in our experiment, the 3D
models we used have good reliability.

Comparison with real dataset: The experiment was car-
ried out using semi-synthetic dataset. Therefore, there is
a possibility that our experiment does not fit the actual
environment. Although they do not cover the entire direc-
tion, several datasets (e.g., [18]) provide multi-view videos
of pedestrians. We, therefore, performed a comparison of
our experimental result with an actual dataset (OU-MVLP
dataset [18]) to evaluate the validity of our experiment.
Figure 8 shows the EER from OU-MVLP dataset and our
result from a similar view direction. While the absolute
values of EER are different because the number of subjects
included in the datasets is different, the tendency is simi-
lar (i.e., the accuracy is better around & = 30° and worse
around ¢ = 60°). Not only when using the same dis-
tance metric to our experiment (L2-norm between GEIs),
the tendency is consistent when using state-of-the-art dis-
tance metric optimized by deep neural networks [30]. This
result indicates the validity of our experiment based on
simulation dataset.

4.4 Multi-camera gait recognition

Designating an effective layout for multiple cameras for
gait recognition is straightforward using the directional
performance characteristics. Personal authentication sys-
tems at building entrances, for example, can use multi-
ple cameras installed at fixed positions to increase their

EER [%]

4 w

OUMVLP (L2, § = 24.8°,d = 8 m)
OUMVLP (GEI Net, 6 = 24.8°,d = 8m)
—e— Ours (0 =20°,d=10m)
0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Horizontal angle a [degrees]
Fig. 8 Comparison with a real dataset [18]. The recognition accuracy

in our experiment shows a similar tendency with an existing dataset
capturing actual pedestrians
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authentication accuracy. Similarly, moving cameras such
as drones can obtain gait features from multiple view-
points as they move around.

As a proof of concept, we performed a brief multi-view
gait recognition experiment to demonstrate the perfor-
mance improvement. The dissimilarities D; between the
gait features captured from multiple positions are calcu-
lated for each position, where i denotes the i-th viewpoint.
Assuming a simple case, we obtain an overall dissimilarity
value by summing the multiple dissimilarities D = )", D;.

Figure 9 illustrates the performance improvement at two
vertical angles & = 0° and 70° and two distances d = 20
and 5, after combining the GEIs obtained from two hor-
izontal angles, denoted as «; and a. We calculate the
EER of the two-view recognition (denoted as EER;) by
summing the dissimilarity matrices of the two horizontal
angles. Denoting the EERs for single-view recognition at
a1 and op as EER; and EERy, respectively, we calculate the

improvement in Aggr as:
Arpr = min(EER{, EERy) — EER.. (1)

When the vertical angle is small (cf. Fig. 9a), the
performance improvement is large when two gait fea-
tures are captured from perpendicular directions (dashed
lines in the figure). Conversely, when the vertical
angle is large (cf. Fig. 9b), combined front and back
views achieve a notable improvement (the circle in
the figure).

4.5 Summary and application scenarios
In this section, we summarize the insights yielded by our
experiment and introduce practical application scenarios.
Table 2 summarizes the best single- and two-view gait
recognition performance for each vertical angle.

For single-camera gait recognition, the suggested cam-
era locations are as follows.

e Small vertical angle (e.g., § = 0°): capture from the
front or back. The best performance was EER = 1.92%
at 0 = 0° znd @ = 190°, while the performance at
a = 10° was almost equivalent (EER = 1.93%).

e Middle vertical angle (e.g., § = 40°): capture from the
back. The best performance was EER = 1.82% at
6 = 40° and « = 200°.

e Large vertical angle (e.g., & = 70°): capture diagonally
from the front. The best performance was EER =
2.75% at 6 = 70° and o = 30°.

e Top view (e.g., 8 = 90°): capture from the side if
height normalization is applied for feature
calculation. The best performance was EER = 3.09%
at @ = 90° and o = 100°.

Regarding the distance, there was no notable drop in
recognition accuracy when the silhouette height of the
pedestrians was around 50 pixels or more when we
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Fig. 9 Performance improvement (i.e, decrease in EER) for two-view gait recognition. Larger values indicate greater improvement (e.g., highlighted
by dashed lines and a circle). a Horizontal angle & = 0°, distance d = 20 m. b Horizontal angle o = 70°, distanced = 5m
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used a simple (GEI + L2 distance-based) gait recognition

approach.

For two-camera scenarios, we obtained the following

insights.

e Low vertical angle: combine views from

perpendicular directions, e.g., front/back and side.
The best performance was EER = 1.58% achieved at

6 = 0° by combining « = 190° and 280°.

e Middle vertical angle: combine two diagonal back

Table 2 Best single- and two-view gait recognition performance

views. The best performance was EER = 1.52%
achieved at & = 40° by combining « = 190° and
210°.

Large vertical angle: combine diagonal front and back
views. The best performance was EER = 1.37%
achieved at & = 70° by combining o« = 40° and

o = 220°.

Top views: the combination does not affect
performance because the same views are acquired.

Vertical angle
Best EER
(Single view)
Best EER

(Two views)

Vertical angle
Best EER
(Single view)
Best EER

(Two views)

Vertical angle
Best EER
(Single view)
Best EER

(Two views)

6 =0°

1.92%

(@ = 190°)
1.58%

(o = 190°,280°)

0 = 40°

1.82%

(o = 200°)
1.52%

(@ =190°,210°)

0 =70°

2.75%

(a = 30°)
1.37%

(o = 40°,220°)

6 =10°

1.98%

(@ = 190°)
1.72%F

(@ = 190°,280°)

6 =50°

2.38%

(@ = 200°)
2.06%!

(@ = 120°,200°)

0 = 80°

3.44%

(@ =310°)
2.19%

(¢ =10°,140°)

0 = 20° 0 = 30°
1.78% 1.72%

(@ = 190°) (o = 200°)
1.37% 1.41%

(@ = 190°,230°)

6 = 60°
2.75%

(@ = 200°)
241%F

(@ = 110°,190°)

6 = 90°

3.09%

(@ = 100°)
3.09%"

(@ = 100°,100°)

(¢ = 170°,200°)

Note “t" denotes that several combinations yield the same accuracy (d = 5 m)
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Condition 2:
- High altitude (6 = 70°)

:> a = 40° and 220°

Examples of suggested a= 2290
camera positions 6=70
Condition 1:
- Low altitude (8 = 0°)
- Need front-view camera
a = 10° and 90°
:> Est. EER: 1.66 % -
walking
dLCUOﬂ target area

Est. EER: 1.37 %

Fig. 10 Application scenario for directional gait recognition. Suggested camera locations for multi-camera gait authentication system

D a =90°
9=0°

When using three or more cameras, the recognition per-
formance and its improvements can easily be obtained
from the dissimilarity matrices.

By leveraging the directional recognition characteris-
tics, we can systematically design the camera locations for
multi-camera gait recognition applications. We provide
a concrete example of an application scenario in which
we design the camera positions for a gait authentica-
tion system using two cameras in front of a building
entrance. In a practical situation, we need to consider
several requirements for the camera setting, e.g., where
can we physically install the cameras? As shown in
Fig. 10, centering on the target area where the cameras
shoot the pedestrian, we can observe the optimal set
of camera positions while taking other factors such as
physical restrictions into account. If it is necessary to
install a front-view camera, our results suggest that it
is better to install the second camera perpendicular
to the original camera (cf. condition 1 in Fig. 10). It is
naturally difficult to install cameras at the same height
as pedestrians. If we have to install the cameras above
0 = 70° our results suggest installing two cameras at
a = 40° and 210° (cf. condition 2 in Fig. 10). Because we
can estimate the recognition errors for a multi-camera
input, we can also evaluate how many cameras are
required (and where to locate them) to achieve sufficient
recognition accuracy for the specific application. Once
the cameras are installed, the system requires the user
to be captured by the cameras in gallery sequences,
similar to other biometric authentication systems.
Using the gallery sequences, the system performs the
authentication tasks.

5 Conclusion
This paper has described the directional performance
characteristics of silhouette-based gait recognition for

developing standards for GEI-based gait recognition using
multiple or moving cameras. We found that the EERs of
gait recognition based on GEIs varied with the horizon-
tal view direction; moreover, performance varied notably
in the vertical direction due to the characteristics of the
human body. Given the performance characteristics, we
proposed a view selection scheme for multi-camera gait
recognition using GEIs. We plan to develop novel security
applications such as drone-view gait recognition and to
investigate unknown tendencies in biometrics. Together
with the recent progress in human tracking and gait recog-
nition research, we firmly believe that the directional
characteristics of silhouette-based gait recognition will be
helpful for future security applications.
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