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Abstract

The past 20 years has seen a progressive evolution of computer vision algorithms for unsupervised 2D image
segmentation. While earlier efforts relied on Markov random fields and efficient optimization (graph cuts, etc),

the next wave of methods beginning in the early part of this century were, in the main, stovepiped. Of these 2D
segmentation efforts, one of the most popular and, indeed, one that comes close to being a state of the art method is
the ultrametric contour map (UCM). The pipelined methodology consists of (i) computing local, oriented responses,
(i) graph creation, (iii) eigenvector computation (globalization), (iv) integration of local and global information,

(v) contour extraction, and (vi) superpixel hierarchy construction. UCM performs well on a range of 2D tasks.
Consequently, it is somewhat surprising that no 3D version of UCM exists at the present time. To address that lack, we
present a novel 3D supervoxel segmentation method, dubbed 3D UCM, which closely follows its 2D counterpart
while adding 3D relevant features. The methodology, driven by supervoxel extraction, combines local and global
gradient-based features together to first produce a low-level supervoxel graph. Subsequently, an agglomerative
approach is used to group supervoxel structures into a segmentation hierarchy with explicitly imposed containment
of lower-level supervoxels in higher-level supervoxels. Comparisons are conducted against state of the art 3D
segmentation algorithms. The considered applications are 3D spatial and 2D spatiotemporal segmentation scenarios.
For the latter comparisons, we present results of 3D UCM with and without optical flow video pre-processing. As
expected, when motion correction beyond a certain range is required, we demonstrate that 3D UCM in conjunction
with optical flow is a very useful addition to the pantheon of video segmentation methods.

Keywords: Supervoxels, Ultrametric contour map (UCM), Optical flow, Normalized cuts, Eigensystem

1 Introduction

The ready availability of 3D datasets and video has opened
up the need for more 3D computational tools. Fur-
ther, the big data era with ever improving computational
resources allows us to envisage complex 3D processing
methodologies with the anticipation of increased prac-
ticality. The focus in the present work is on 3D seg-
mentation. There is a clear and pressing need to extract
coherent, volumetric, and spatiotemporal structures from
high-dimensional datasets—specifically lightfields, RGBD
videos and regular video data, particle-laden turbulent
flow data comprising dust storms and snow avalanches,
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and finally 3D medical images like MRIs. It is natural to
represent coherent 3D structures in the form of locally
homogeneous segments or irregularly shaped regions
with the expectation that such structures correspond to
objects of interest.

A particular focus of the present work is the parsing
of volumetric and spatiotemporal datasets into supervox-
els. While there exists previous work on this topic, the
supervoxel literature is considerably sparser than the cor-
responding superpixel literature. Supervoxels perform a
similar function to superpixels: the codification of locally
coherent, homogeneous regions. Superpixels and super-
voxels have a conceptual connection to clustering since
the latter is a popular way to extract coherent struc-
tures from a set of patterns (using some imposed metric).
However, the principal difference is that supervoxels can
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benefit from the gridded structure of the data (which is
not the case for general patterns). Consequently, success-
ful supervoxel estimation techniques and the grouping
algorithms at their center can be expected to leverage the
“dense” nature of gridded 3D patterns.

The popular ultrametric contour map (UCM) frame-
work [1] has established itself as the state of the art in
2D superpixel segmentation. However, a direct extension
of this framework has not been seen in the case of 3D
supervoxels. The current popular frameworks in 3D seg-
mentation start by constructing regions based on some
kind of agglomerative clustering (graph based or other-
wise) of single pixel data. However, the 2D counterparts
of these methods on which they are founded are not as
accurate as UCM. This is because the UCM algorithm
does not begin by grouping pixels into regions. Instead,
it combines local feature information and global grouping
in a two-step process which is responsible for its success.
Therefore, it follows that a natural extension of this two-
step process in the case of 3D should be a harbinger for
success.

UCM derives its power from a combination of local
and global cues which complement each other in order to
detect highly accurate boundaries. However, all the other
methods, with the exception of normalized cuts [2] (which
directly obtains regions), are inherently local and do not
incorporate global image information. In sharp contrast,
UCM includes global image information by estimating
eigenfunction scalar fields of graph Laplacians formed
from local image features. Subsequently, the two pieces of
information (local and global) are integrated to produce a
good segmentation. Despite this inherent advantage, the
high computational cost of UCM (mainly in its globaliza-
tion step) is a bottleneck in the development of its 3D
analog. Recent work in [3] has addressed this issue in 2D
by providing an efficient GPU-based implementation but
the huge number of voxels involved in the case of spa-
tiotemporal volumes remains an issue. The work in [4]
provides an efficient CPU-only implementation by lever-
aging the structure of the underlying problem and provid-
ing a reduced order normalized cuts approach to address
the original computationally inefficient eigenvector prob-
lem. Consequently, this opens up a plausible route to 3D
as a reduced order approach effectively solving a closely
related globalization problem but at a fraction of the cost.
It should be noted that we do not expect the current
rapid improvements in hardware and distributed process-
ing to significantly improve the tractability of the origi-
nal eigenvector problem in 3D, hence our foray into an
approximate, reduced order, normalized cuts approach.

The main work of this paper has a tripartite structure.
First, we design filters for 3D volumes (either space-
time video or volumetric data) which provide local cues
at multiple scales and at different orientations—akin
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to the approach in 2D UCM. Second, we introduce
a new method for graph affinity matrix construc-
tion—henceforth called the oriented intervening contour
cue—which extends the idea of the intervening contour
cue in [5]. Third, we solve a reduced order eigenvec-
tor problem by leveraging ideas from the approach in
[4]. After this globalization step, the local and global
fields are merged to obtain a new 3D scalar field. Sub-
sequent application of a watershed transform on this 3D
field yields supervoxel tessellations (represented as rela-
tively uniform polyhedra that tessellate the region). The
next step in this paper is to build a hierarchy of super-
voxels. While 2D UCM merges regions based on their
boundary strengths using an oriented watershed trans-
form approach, we did not find this approach to work
well in 3D. Instead, to obtain the supervoxel hierarchy,
we follow the approach of [6] which performs a graph-
based merging of regions using the method of internal
variation [7].
The contributions of this work are summarized below:

e e present the first 3D UCM method for the
segmentation problem. Our approach extends the
popular and highly accurate gPb-UCM framework (a
technical term which will be elaborated below) to 3D
resulting in a highly scalable framework based on
reduced order normalized cuts. To the best of our
knowledge, there does not exist a surface detection
method in 3D which uses a graph Laplacian-based
globalization approach for estimating supervoxels.

e [tis a fully unsupervised method and it achieved state
of the art performance on supervoxel benchmarks,
especially having less fragmentation, better region
quality, and better compactness. Further, our results
indicate that owing to the deployment of a
high-quality boundary detector as the initial step, our
method maintains a distinction between the
foreground and background regions by not causing
unnecessary oversegmentation of the background at
the lower levels of the hierarchy. This is especially
clear in the video segmentation results presented in
the paper.

e We expect applications of 3D UCM in a wide range
of vision tasks, including video semantic
understanding and video object tracking and labeling
in high-resolution medical imaging.

The organization of the paper is as follows. Section 2
describes related work on 2D and 3D segmentation. Since
this work is almost impossible to adequately summarize,
we paint a broad brush while focusing on work that had
a direct impact on the present work. Section 3 describes
the extension of the 2D gPh-UCM framework to 3D while
clearly pointing out the compromises and design choices.
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This is followed in Section 4 by a brief foray into video
segmentation and integration with optical flow. Section 5
evaluates the proposed approach and other state of the art
supervoxel methods on two different types of 3D volumet-
ric datasets both qualitatively and quantitatively. Section 6
concludes by summarizing our contributions and also dis-
cusses the scope for future work. Throughout the paper,
we use the term pixel and voxel interchangeably when
referring to the basic “atom” of 2D/3D images.

2 Related work

We first address previous work based on the normalized
cuts framework. Subsequently, we attempt to summa-
rize previous work on volumetric image segmentation
with the caveat that this literature is almost impossible to
summarize.

2.1 Normalized cuts and gPb-UCM

Normalized cuts [2] gained immense popularity in 2D
image segmentation by treating the image as a graph and
computing hard partitions. The gPb-UCM framework [1]
leveraged this approach in a soft manner to introduce
globalization into their contour detection process. This
led to a drastic reduction in the oversegmentation aris-
ing out of gradual texture or brightness changes in the
previous approaches. Being a computationally expensive
method, the last decade saw the emergence of several
techniques to speed up the underlying spectral decompo-
sition process in [1]. These techniques range from various
optimization techniques like multilevel solvers [8, 9], to
systems implementations exploiting GPU parallelism [3],
and to approximate methods like reduced order normal-
ized cuts [4, 10].

2.2 3D volumetric image segmentation

Segmentation techniques applied to 3D volumetric
images can be found in the literature of medical imaging
(usually MRI) and 2D +time video sequence segmentation.
In 3D medical image segmentation, unsupervised tech-
niques like region growing [11] have been well studied.
In [12], normalized cuts were applied to MRIs but gained
little attention. Recent literature mostly focuses on super-
vised techniques [13, 14]. In video segmentation, there
are two streams of works. On the one hand, Galasso et
al. and Khoreva et al’s studies [15-18] are frameworks
that rely on segmenting each frame into superpixels in
the first place. Therefore, they are not applicable to gen-
eral 3D volumes. On the other hand, a variety of other
methods treat video sequences as spatiotemporal vol-
umes and try to segment them into supervoxels. These
methods are mostly extensions of popular 2D image seg-
mentation approaches, including graph cuts [19, 20], SLIC
[21], mean shift [22], graph-based methods [6], and nor-
malized cuts [9, 23]. Besides these, temporal superpixels
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[24-26] are another set of effective approaches that
extract high-quality spatiotemporal volumes. A compre-
hensive review of supervoxel methods can be found in
[27, 28]. All of this development in the area of 3D super-
voxels has led to a general consensus in the video segmen-
tation community that supervoxels have favorable prop-
erties which can be leveraged later in the pipeline. These
characteristics are summarized as follows: (i) supervoxel
boundaries should stick to meaningful image boundaries;
(ii) regions within one supervoxel should be homogeneous
while inter-supervoxel differences should be substantially
larger; (iii) it is important that supervoxels have regular
topologies; (iv) a hierarchy of supervoxels is favored as dif-
ferent applications have different supervoxel granularity
preferences.

2.3 Deep neural networks

Recently, deep learning, a re-branding of neural networks
(NNs), has seen successful application in numerous
areas, especially in computer vision and natural language
processing. Typical approaches, such as support vec-
tor machines (SVMs), Gaussian mixture models, hidden
Markov models, and conditional random fields, mostly
have “shallow” architectures that have only one to two
processing layers between the features and the output.
Deep neural networks, e.g., convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs),
usually have many layers which allow for a rich variety
of highly complex, nonlinear, and hierarchical features to
be learned from the data. Video segmentation problems
involve several subproblems which can be classified as
semantic segmentation [29] and general object segmen-
tation [30, 31]. For video object segmentation problems,
convolutional neural network (CNN)-based approaches
have made great advances in both unsupervised learning
[30, 32—35] and semi-supervised learning [36—38]. CNNs
have recently been integrated with gPb-UCM. Convolu-
tional oriented boundaries (COB) [39, 40] is a generic
CNN architecture that allows end-to-end learning of mul-
tiscale oriented contours and provides state of the art
contours and region hierarchies. It uses a pipeline sim-
ilar to gPb-UCM but replaces the contour probability
maps by CNN maps from VGGNet [41] and ResNet [42].
We introduced transfer learning to 3D UCM without the
intermediate supervised CNN layers as in COB. Our very
preliminary investigation into using transfer learning (re-
application of discriminative deep learning features) in
3D UCM was unsuccessful in outperforming unsuper-
vised 3D UCM. However, due to rapid developments that
are ongoing in this space, a definitive conclusion can-
not be reached at this time. Since the basic approach of
adding deep network features to our 3D UCM pipeline is
extremely straightforward, we plan to revisit this in the
future to see if significant improvements can be achieved
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over and beyond our current unsupervised learning UCM
pipeline.

3 The supervoxel extraction framework

As mentioned in the Introduction, our work is a natu-
ral extension of UCM, the state of the art 2D superpixel
extraction approach. We now briefly describe the steps in
2D UCM since these are closely followed (for the most
part) in our 3D effort.

UCM begins by introducing the Pb gradient-based
detector which assigns a “probability” value Pb(x, y,0) at
every location (x,y) and orientation 6. This is obtained
from an oriented gradient detector G(x, y, ) applied to an
intensity image. A multiscale extension mPb(x, y, ) to the
Pb detector is deployed by executing the gradient oper-
ator at multiple scales followed by cue combination over
color, texture, and brightness channels. Thus far, only local
information (relative to scale) has been used. In the next
globalization step, a weighted graph is constructed with
graph edge weights being set proportional to the evidence
for a strong contour connecting the nodes. This is per-
formed for all pairs of pixels resulting in an N? x N2 graph
given N? pixels. The top eigenvectors of the graph are
extracted, placed in image coordinates followed by gradi-
ent computation. This results in the sPb(x, y,0) detector
which carries global information as it is derived from
eigenvector “images.” Finally, the globalized probability
detector gPb(x,y,0) is computed via a weighted linear
combination of mPb and sPb. While this completes the
pipeline in terms of information accrued for segmenta-
tion, UCM then proceeds to obtain a set of closed regions
using gPb as the input via the application of the oriented
watershed transform (OWT). Watershed-based flood fill-
ing is performed at the lowest level of a hierarchy leading
to an oversegmentation. A graph-based region merging
algorithm (with nodes, edges, and weights corresponding
to regions, separating arcs and measures of dissimilarity
respectively) is deployed resulting in an entire hierarchy
of contained segmentations (respecting an ultrametric).
The UCM pipeline can be broadly divided into (i) the gPb
detector, (ii) the oriented watershed transform, and (iii)
graph-based agglomeration.

The pipeline in our 3D UCM framework closely fol-
lows that of 2D gPb-UCM with one major exception which
will be clarified and elaborated upon below. The greater
voxel cardinality forces us to revamp the globalization step
above wherein a graph is constructed from every pair of
voxels: if the volumetric dataset is N x N x N, the graph
is N® x N3 which is too large for eigenvector computa-
tion. Therefore, computational considerations force us to
adopt reduced order eigensystem solvers. A second excep-
tion concerns the agglomeration step. 2D UCM merges
regions together by only considering contour edge pix-
els at the base level and not all pixels. This approach
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leads to the creation of fragmented surfaces in 3D. To
overcome this problem, we perform graph-based agglom-
eration using all voxels following recent work. With these
changes to the pipeline, the 3D UCM framework is
broadly subdivided into (i) local, volume gradient detec-
tion, (ii) globalization using reduced order eigensolvers,
and (iii) graph-based agglomeration to reflect the empha-
sis on the changed subsystems. The upside is that 3D
UCM becomes scalable to handle sizable datasets.

3.1 Local gradient feature extraction

The UCM framework begins with gradient-based edge
detection to quantify the presence of boundaries. Most
gradient-based edge detectors in 2D [43, 44] can be
extended to 3D for this purpose. The 3D gradient operator
used in this work is based on the mPb detector pro-
posed in [1, 45] which has been empirically shown to have
superior performance in 2D.

The building block of the 3D mPb gradient detector is
an oriented gradient operator G(x,9,z,0, ¢, r) described in
detail in Fig. 1. To be more specific, in a 3D volumetric or
spatiotemporal intensity field, we place a sphere centered
at each voxel to denote its neighborhood. An equato-
rial plane specified by its normal vector £(d, ¢) splits the
sphere into two half spheres. We compute the intensity
histograms for both half spheres, denoted as gand h. Then
we define the gradient magnitude in the direction (6, ¢)
as the x2 distance between g and /:

2 (g@@) — h(l))2 1
x*(gh) Xl: T RO (1)

In order to capture gradient information at multiple
scales, this gradient detector is executed for different
radius values r of the neighborhood sphere. Gradients
obtained from different scales are then linearly combined
together using

Gs(x,9,2,0,¢0) = ZarG(x,y,z,Q,go, r) (2)
r

where o, weighs the gradient contribution at different
scales. For multi-channel 3D images like video sequences,
Gs(x,7,2,0, ) is separately calculated from each channel
and summed up using equal weights. Finally, the mea-
sure of boundary strength at (x,y,z) is computed as the
maximum response over all directions ?(6’, ©):

mPb(x,y,z) = rrelax Gs(x%,7,2,0,¢). (3)
)

In our experiments, 0 and ¢ take values in {0, 5 34? }
and {—%, 0,7 } respectively and in one special case, ¢ =
7. Therefore, we compute local gradients in 13 different
directions. Neighborhood values of 2, 4, and 6 voxels were
used for r. Equal weights «, were used to combine gradi-
ents across different scales. Also, as is standard, we always
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Fig. 1 The oriented gradient operator G(x,y,z,6, ¢, r): At location (x, y, z), the local neighborhood is defined by a sphere with radius r. An equatorial
plane 7 (shaded green) along with its normal vector T splits the sphere into two half spheres. The one above 7 is shaded yellow and the one below is
shaded blue. We histogram the intensity values of voxels that fall in the yellow and blue half spheres respectively. Finally, the local gradient
magnitude is set to the x 2 distance between the yellow and blue histograms in the direction t at scale r

Pixel Count

Intensity Value
Blue half sphere
intensity histogram

Pixel Count

Intensity Value
Yellow half sphere
intensity histogram

apply an isotropic Gaussian smoothing filter with o = 3
voxels before any gradient operation.

3.2 Globalization using a reduced order eigensystem

The globalization core of gPb-UCM is driven by nonlinear
dimensionality reduction (closely related to spectral clus-
tering). The local cues obtained from the gradient feature
detection phase are globalized (and therefore emphasize
the most salient boundaries in the image) by computing
generalized eigenvectors of a graph Laplacian (obtained
from the normalized cuts principle) [2]. However, this
approach depends on solving a sparse eigensystem at the
scale of the number of pixels in the image. Thus, as
the size of the image grows larger, the globalization step
becomes the computational bottleneck of the entire pro-
cess. This problem is even more severe in the 3D setting
because the voxel cardinality far exceeds the pixel car-
dinality of our 2D counterparts. An efficient approach
was proposed in [4] to reduce the size of the eigensys-
tem while maintaining the quality of the eigenvectors
used in globalization. We generalize this method to 3D
so that our approach becomes scalable to handle sizable
datasets.

In the following, we describe the globalization steps:
(i) graph construction and oriented intervening contour
cue, (ii) reduced order normalized cuts and eigenvector
computation, (iii) scale-space gradient computation on
the eigenvector image, and (iv) the combination of local
and global gradient information. For the most part, this
pipeline mirrors the transition from mPb to gPb with the
crucial difference being the adoption of reduced order
normalized cuts.

3.2.1 Graph construction and the oriented intervening
contour cue

In 2D, the normalized cuts approach begins with sparse
graph construction obtained by connecting pixels that
are spatially close to each other. gPb-UCM [1] specifies a
sparse symmetric affinity matrix W using the interven-
ing contour cue [5] which is the maximal value of mPb
along a line connecting the two pixels i,j at the ends of
relation Wj;. However, this approach does not utilize all of
the useful information obtained from the previous gradi-
ent feature detection step. Figure 2 describes a potential
problem and our resolution. To improve the accuracy of
the affinity matrix, we take the direction vector of the
maximum gradient magnitude into consideration when
calculating the pixel-wise affinity value. This new variant
is termed the oriented intervening contour cue. For any
spatially close voxels i and j, we use ij to denote the line
segment connecting i and j. d is defined as the unit direc-
tion vector of ij. Assume P is a set of voxels that lie close
to ij. For any p € P, 7 is the unit direction vector associ-
ated with its mPb value. We define the affinity value Wj
between i and j as follows:

Wy = exp (— max(mPb(p)| (d, 1) |}/p> ()

where (-,-) is the inner product operator of the vector
space and p is a scaling constant. In our experiments, the
set P contains the voxels that are at most 1 voxel away from
ij. p is set to 0.1. In the affinity matrix W, each voxel is
connected to voxels that fall in the 5 x 5 x 5 cube centered
at that voxel. Thus the graph defined by W is very sparse.
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Fig. 2 Left: Suppose we want to calculate the affinity value between voxels A and B. C is the voxel with maximal mPb value that lies on the line
segment AB. In the upper-left case, A and B belong to one region. In the lower-left case, A and B are in two different regions. But the intervening
contour cue of UCM [1] gives the same affinity value in both cases, which is not very satisfactory. Obviously it would be better if we consider the
direction  of C's mPb. Right: In our oriented intervening contour cue approach, when calculating affinity values, we always take the product of mPb(C)
with the absolute value of the inner product (¢, 73), where 7 is the unit direction vector of line segment AB. If A and B are on different sides of a
boundary surface, | (t, )| will be large, leading to small affinity value and vice versa

3.2.2 Reduced order normalized cuts and eigenvector
computation

At this point, standard 2D gPb-UCM solves for the gener-

alized eigenvectors of the sparse eigensystem

(D — W)y = ADv (5)

where D is a diagonal matrix defined by D; = X;Wj.
However, this eigenvector problem is computationally
very intensive. It becomes the bottleneck, both in time and
memory efficiency, of the normalized cuts-based segmen-
tation algorithms. To overcome this problem, an efficient
and highly parallel GPU implementation was provided in
[3]. However, this approach requires us to use GPU-based
hardware and software suites—an unnecessary restric-
tion at this stage of development. A clever alternative in
[4, 10] builds the graph on superpixels instead of pix-
els to reduce the size of the eigensystem. We chose to
generalize Taylor’s [4] approach to 3D as (i) the super-
pixel solution is more scalable than the GPU solution
in terms of memory requirements, (ii) specialized GPU
co-processors are not commonly available in many com-
puting platforms like smart phones and wearable devices,
and (iii) the approach in [10] is specifically designed for
superpixels in each frame in video segmentation, thus not
easily generalizable. Finally, the approach in [4] constructs
areduced order normalized cuts system which is easier to
solve. We denote m as the number of supervoxels and # as
the number of voxels. The reduced order eigensystem is
denoted by

(LT(D - W)L) %= VLTDL% ®)

-

where L € R"™", 3 € R™ and Lx = v. The purpose of L
is to assign each pixel to a superpixel/supervoxel. In our

approach, the supervoxels are generated by a watershed
transform on the mPb image obtained from the volumet-
ric gradient feature detection step. Obviously, the number
of supervoxels m is much smaller than the number of
voxels # in the 3D volumetric/spatio-temporal image. In
practice, there are usually two to three orders reduction
in the size of the eigensystem (from millions of voxels to
few thousands of supervoxels). Therefore, it is much more
efficient to solve Eq. (6) than Eq. (5).

3.2.3 Scale space gradient computation on the eigenvector
image

We solve for the generalized eigenvectors {xg, %7, . . ., %y}
of the system in (6) corresponding to the smallest eigen-
values {A{),A’l, .. .,A;}. As stated in [4], A; in (5) will be
equal to A and Lx; will match v; modulo an irrelevant scale
factor, where v; are the eigenvectors of the original eigen-
system (5). Similar to the 2D scenario [1], eigenvectors ;
carry surface information. Figure 3 shows several example
eigenvectors obtained from two types of 3D volumet-
ric datasets. In both cases, the eigenvectors distinguish
salient aspects of the original image. Based on this obser-
vation, we apply the gradient operator mPb defined in (3)
to the eigenvector images. The outcome of this procedure
is denoted as sPb because it represents the spectral com-
ponent of the boundary detector, following the convention
established in [1]:

K
1
sPb(x,y,z) = Z —=mPb;,(x,,2). (7)
iog Vi

14

Note that this weighted summation starts from i = 1
because A always equals 0 and vj is a vanilla image. The
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Right: The corresponding slices/frames of the first 4 eigenvectors

e

Fig. 3 Upper left: One slice of a brain MRI from the IBSR dataset [61]. Lower left: One frame of a video sequence from the BuffaloXiph dataset [58].

weighting by 1/4/}; is inspired by the mass-spring sys-
tem in mechanics [1, 46]. In our experiments, we use 16
eigenvectors, i.e., K = 16.

3.2.4 The combination of local and global gradient
information

The last step is to combine local cues mPb and global cues

sPb. mPb tries to capture local variations while sPb aims

to obtain salient boundary surfaces. By linearly combining

them together, we get a globalized boundary detector gPb:

gPb(x,y,z2) = omPb(x,,z) + (1 — w)sPb(x,y,z). (8)

In practice, we use equal weights for mPb and sPb. After
obtaining the gPb values, we apply a post-processing step
of non-maximum suppression [43] to get thinned bound-
ary surfaces when the resulting edges from mPb are too
thick. Figure 4 shows some examples of mPb, sPb and gPb.

3.3 Supervoxel agglomeration

At this point, 2D gPb-UCM proceeds with the oriented
watershed transform (OWT) [1, 47, 48] to create a hierar-
chical segmentation of the image resulting in the ultramet-
ric contour map. However, we find that the same strategy
does not work well in 3D. The reasons are twofold. First,
because of the presence of irregular topologies, it is more
difficult to approximate boundary surfaces with square
or triangular meshes in 3D than to approximate bound-
ary curves with line segments in 2D. Second, following
OWT, during superpixel merging, only the information of
the pixels on boundaries are used during greedy boundary
removal. This is not a robust design especially when we
take into account the fragmentation of boundary surfaces
in 3D.

For the above reasons, we turn to the popular graph-
based image and video segmentation methods [6, 7] to
create the segmentation hierarchy. We first apply a water-
shed transform to the gPb field obtained from the previous
step to get an oversegmentation. Next we iteratively merge

mPb

Fig. 4 sPb augments the strength of the most salient boundaries as seen in gPb

Original Slice

sPb
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the adjacent segments beginning with this oversegmenta-
tion. The output of this procedure is a segmentation hier-
archy represented by a tree-structure whose lower-level
segments are always contained in higher-level segments.
As in [6], the merge rules run on a graph. The nodes of
the graph are regions and the edges represent region to
region relations. First, for any two adjacent regions R; and
Rj, we assign an edge e;; to connect them on the graph.
The weight of e; is set to the x? distance between (Lab
space) intensity value histograms of R; and R; with 20 bins
used. Also, for any region R, a quantity named the relaxed
internal variation RInt(R) is defined as follows:

RInt(R) = Int(R) + II%I )
where Int(R) is defined as the maximum edge weight of
its minimum spanning tree (MST). For the lowest-level
regions, ie., the regions of oversegmentation obtained
from the watershed transform, Int(R) is set to 0. |R| is the
voxel cardinality of region R. 7 is a parameter which trig-
gers the merging process and controls the granularity of
the regions. In each iteration of merging, all the edges are
traversed in ascending order. For any edge e;, we merge
incident regions R; and R; if the weight of e;; is less than
the minimum of the relaxed internal variation of the two
regions. Thus the merging condition is written as

weight(e;;) < min{RInt(R;), RInt(R;)}. (10)

In practice, we increase the granularity parameter t by
a factor of 1.1 in each iteration. This agglomeration pro-
cess iteratively progresses until no edge meets the merging
criterion. The advantage of graph-based methods is that
they make use of the information in all voxels in the
merged regions. Furthermore, as shown in the experi-
ments below, we see that it overcomes the weakness of
fragmented supervoxels of previous graph-based meth-
ods. This is because traditional graph-based methods are
built on voxel-level graphs.

Finally, we obtain a supervoxel hierarchy represented by
a bottom-up tree structure. This is the final output of the
3D UCM algorithm. The granularity of the segmentation
is a user-driven choice guided by the application.

4 Integration with optical flow

Integration of 3D UCM with optical flow is quite nat-
ural in the spatiotemporal setting. We would like to
establish spatiotemporal coherence and stability of struc-
tures across time and one way to achieve this is via the
application of optical flow. Estimation of optical flow
across multiple frames is a difficult problem: motion mod-
els and optimization strategies are required to resolve
the ambiguities and discontinuities prevalent. However,
when multiple frames are simultaneously considered, we
are afforded with the possibility of coupling supervoxel
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estimation with multiframe optical flow. While this is
straightforward to visualize in video segmentation, we
argue that the registration of multiple frames across time
can be of benefit in far-flung applications such as par-
ticle flows in computational fluid dynamics and change
detection in remote sensing.

Our work is an extension of 3D UCM supervoxel seg-
mentation to the spatiotemporal case. The pipeline in the
3D UCM framework is to sequentially perform gradient
feature extraction, globalization, and supervoxel agglom-
eration on 3D volumetric images. In the spatiotemporal
case, we precede 3D UCM by first bringing the mul-
tiple frames into register using optical flow. This inte-
gration is dubbed 3D OF UCM to denote the use of
optical flow.

4.1 Optical flow computation

Optical flow has a complex relationship to the actual
3D motion field since it represents apparent motion
caused by intensity change [49, 50]. Optical flow has
been a central topic in computer vision since the 1980s
and has considerably matured since then [51]. The basic
approach consists of estimating a vector field (velocity
vectors at each grid point) which is subsequently related to
object motion.

In general, optical flow can be divided into two types,
sparse optical flow and dense optical flow [51, 52]. Briefly,
the sparse optical flow method only computes flow vec-
tors at some “interesting” pixels in the image, while the
dense optical flow method estimates the flow field at
every pixel and is more accurate [53, 54]. We use dense
optical flow here since we wish to integrate with scene
segmentation.

4.2 Supervoxel segmentation

In recent work on video segmentation problems, motion
estimation has emerged as a key ingredient for state of the
art approaches [7, 55, 56] for both deep learning methods
and typical methods. We introduced optical flow esti-
mation to the pipeline of 3D OF UCM. On top of 3D
UCM, we first compute optical flow and then consider to
employ it as the source of an additional cue to guide the
segmentation.

Given a video sequence, we compute the optical flow
and combine RGB channels with the magnitude of the
optical flow as input to 3D UCM. We use the state of the
art Classic+NL-fast method [57] to estimate the optical
flow. Figure 5 shows the examples of optical flow com-
puted for video sequences from [31, 58]. This is repeated
across multiple frames followed by interpolation to bring
the set of frames into register [59]. We used color cod-
ing in [60] for optical flow in order to aid visualization.
Subsequently, 3D UCM is applied to obtain supervoxel
segmentation of spatiotemporal imagery.
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Fig. 5 Examples of optical flow images. Top: RGB images. Bottom: corresponding motion magnitude estimates

Since our input data has additional optical flow infor-
mation (a motion channel), we usually achieve better
segmentation results especially for some small regions. As
optical flow provides complementary information to RGB
images, 3D OF UCM improves the overall performance.
Datasets, evaluation metrics, and comparison results are
presented in Section 5.

5 Evaluation

We perform quantitative and qualitative comparisons
between 3D UCM, 3D OF UCM, and state of the art
supervoxel methods on different types of 3D volumetric
and spatiotemporal datasets.

5.1 Experimental setup
5.1.1 Datasets
We use three video datasets for quantitative and qual-
itative comparisons. The most typical use cases of 3D
segmentation are medical images like MRIs and video
sequences. We use the publicly available Internet Brain
Segmentation Repository (IBSR) [61] for our medical
imaging application. It contains 18 volumetric brain MRIs
with their white matter, gray matter, and cerebro-spinal
fluid labeled by human experts. These represent cortical
and subcortical structures of interest in neuroanatomy.
The second dataset is BuffaloXiph [58]. It is a subset of
the well-known xiph.org videos, and the 8 video sequences
in the dataset have 69-85 frames with dense seman-
tic pixel labels. The third dataset is the DAVIS dataset
(Densely Annotated VIdeo Segmentation) [31], a bench-
mark dataset designed for the task of video object segmen-
tation. DAVIS contains 55 high-quality and full HD video
sequences and densely annotated, pixel-accurate ground
truth masks, spanning multiple occurrences of common
video object segmentation challenges such as occlusions,
motion blur, and appearance changes. For quantitative
comparisons, we use the BuffaloXiph dataset and carry
out experiments with a thorough quantitative analysis on
a well-accepted benchmark, LIBSVX [28].

5.1.2 Methods

A comprehensive comparison of current supervoxel and
video segmentation methods is available in [27, 28]. Build-
ing on their approach, in our experiments, we compare
3D UCM and 3D OF UCM to two state of the art super-
voxel methods: (i) hierarchical graph based (GBH) [6] and
(ii) segmentation by weighted aggregation (SWA) [8, 9,
62]. GBH is the standard graph-based method for video
segmentation and SWA is a multilevel normalized cuts
solver that also generates a hierarchy of segmentations.
Some quantitative superpixel evaluation metrics have
been recently used [63] for frame-based 2D images. For
3D spacetime validation, a comprehensive comparison of
current supervoxel and video segmentation methods is
available in [27, 28].

5.2 Qualitative comparisons

We present some example segmentation results for three
datasets: IBSR, BuffaloXiph, and DAVIS. To compare
GBH, SWA, and 3D UCM, we present some slices from
both the IBSR and BuffaloXiph datasets in Fig. 6. It shows
that, through different levels, there are significant differ-
ences in the segmentation results of all three methods.
However, it is difficult to say which method is the best
compared with the ground truth. It should be noted that
GBH has a fragmentation problem in the IBSR and Buf-
faloXiph datasets. On the other hand, SWA has a clean
segmentation in IBSR but suffers from fragmentation in
video sequences. In contrast, 3D UCM has the most
regular segmentation.

And in Figs. 7 and 8, from top to bottom, we show fine-
level to coarse-level supervoxel segmentation compari-
son of these methods on IBSR and BuffaloXiph datasets
respectively. The results show that all four methods dif-
fer markedly in the kind of segmentations they obtain.
For brain frames the IBSR dataset, the visual compar-
ison shows that 3D UCM performs well especially on
the globalization aspect, such as having no oversegmen-
tation in the background. As can be seen, GBH and
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Original

image

Groundtruth

GBH

SWA

3D-UCM

Fig. 6 The level of the segmentation hierarchy is chosen to be similar to the ground truth granularity. Left: IBSR dataset results. The white, gray and
dark gray regions are white matter, gray matter and cerebro-spinal fluid (CSF) respectively. Right: BuffaloXiph dataset results

SWA both have a fragmentation problem in the Buf-
faloXiph datasets through different levels. In contrast,
3D UCM has the most regular segmentation and 3D OF
UCM has the finest segmentation even in small detailed
regions. In general, 3D UCM generates meaningful and
compact supervoxels at all levels of the hierarchy while

GBH and SWA have a fragmentation problem at the
lower levels. To demonstrate the improved supervoxel
agglomeration of 3D OF UCM compared to 3D UCM,
we examine Fig. 9 which shows the original images, opti-
cal flow images, segmentation from 3D UCM, and 3D
OF UCM. The optical flow images generated prior to

Finer level

Coarser level

GBH

SWA

Fig. 7 The hierarchy of segmentations for the IBSR dataset. Left: GBH. Middle Left: SWA. Middle Right: 3D UCM. Top Right: Original Slice. Bottom Right:

Ground-truth

Original Slice

= = - = - —— = = == = === )

3D UCM

Groundtruth
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Finer level

Coarser level

GBH SWA

Fig. 8 The hierarchy of segmentations for the BuffaloXiph dataset. Left: GBH. Middle Left: SWA. Middle Right: 3D UCM. Right: 3D OF UCM

3D UCM 3D OF UCM

segmentation extract the boundaries of different objects
and improve the supervoxel segmentation. For instance,
the two legs of the person in the center of the image
in Fig. 9 are grouped as the same supervoxel object by
3D OF UCM but segmented as different objects by 3D
UCM. Also for the snowboard frames, 3D OF UCM gener-
ates finer supervoxels for both the moving object and the
background.

And in the DAVIS dataset, we selected some examples
of optical flow and segmentation results of 3D OF UCM
in Fig. 10. It shows that 3D OF UCM generates fine super-
voxels and avoids unnecessary oversegmentation of the

background for the moving object because of information
from the optical flow motion channel. The result can
be regarded as early video processing and be employed
to other vision tasks, e.g., semantic segmentation and
object segmentation. To sum up, 3D UCM leverages the
strength of a high-quality boundary detector and, based
on that, 3D OF UCM leverages additional flow field infor-
mation to perform better. Hence, from qualitative com-
parisons on two benchmark datasets, it suffices to say
that 3D OF UCM generates more meaningful and com-
pact supervoxels at all levels of the hierarchy than three
other methods.

,)’

Original Slice Optical Flow

Fig. 9 Comparison of 3D UCM and 3D OF UCM on the BuffaloXiph (top) and DAVIS (bottom) dataset. Left: Original frames. Middle Left: Optical flow
frames. Middle Right: 3D UCM segmentation for selected level. Right: 3D OF UCM segmentation for selected level

3D UCM

3D OF UCM
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A

Groundtruth

Original Slice

Optical Flow 3D OF UCM

Fig. 10 Optical flow estimation and supervoxel segmentation for multiple temporal frames on DAVIS dataset

5.3 Quantitative measures

As both the IBSR and BuffaloXiph datasets are densely
labeled, we are able to compare the supervoxel meth-
ods on a variety of characteristic measures. Besides, we
re-examined our 3D OF UCM experiments to quantify
improvement by using optical flow as a complementary
cue. In the previous experiment integrating optical flow
with 3D UCM, we only compute optical flow for the
first 15 frames and added flow vectors to the original
RGB channels. In the next experiment, we process optical
flow estimation for the complete video in the BuffaloX-
iph dataset, and the results show more improvements. We
posit the improvements mostly benefit from consistency
of motion flow in video. For performance comparisons
between 3D OF UCM and 3D UCM, the main improve-
ments are demonstrated on quantitative measures. From
the figures of quantitative measures, we notice that, except
at very small granularity, 3D OF UCM perform better
than 3D UCM on boundary quality, region quality, and
supervoxel compactness.

5.3.1 Boundary quality

The precision-recall curve is the most recommended
measure and has found widespread use in comparing
image segmentation methods [1, 45]. This was introduced
into the world of video segmentation in [16]. We use it
as the boundary quality measure in our benchmarks. It
measures how well the machine generated segments stick
to ground truth boundaries. More importantly, it shows
the tradeoff between the positive predictive value (preci-
sion) and true positive rate (recall). For a set of machine

generated boundary pixels S; and human labeled bound-
ary pixels Gy, precision and recall are defined as follows:

1SN Gyl _ 1SN Gy
precision = ————, recall = G
b

11
[Sp ()

We show the precision-recall curves on IBSR and Buf-
faloXiph datasets in Fig. 11a, d respectively. 3D UCM
performs the best on IBSR and is the second best on Buf-
faloXiph while 3D OF UCM perform the best. GBH does
not perform well on BuffaloXiph while SWA is worse on
IBSR. One limitation of 3D OF UCM and 3D UCM is that
there is an upper limit of its boundary recall because it is
based on supervoxels. GBH and SWA can have arbitrar-
ily fine segmentations. Thus they can achieve a recall rate
arbitrarily close to 1, although the precision is usually low
in these situations. Since our 3D OF UCM adds a motion
channel to 3D UCM, its boundary quality is better than
3D UCM.

5.3.2 Region quality

Measures based on overlaps of regions such as Dice’s
coefficients are widely used in evaluating region cover-
ing performances of voxelwise segmentation approaches
[64, 65]. We use the 3D segmentation accuracy introduced
in [27, 28] to measure the average fraction of ground
truth segments that is correctly covered by the machine-
generated supervoxels. Given that G, = {g1,£2,...,%mu}
are ground truth volumes, S, = {s1,s2,...,,} are super-
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Fig. 11 Quantitative measures. a IBSR, boundary. b IBSR, region. ¢ IBSR, compactness. d BuffaloXiph, boundary. e BuffaloXiph, region. f BuffaloXiph,

compactness

voxels generated by the algorithms, and V' represents the
whole volume, the 3D segmentation accuracy is defined as

1O Y lsiNgil x 1 Ngil = 1sy N gD
3D segmentation accuracy = — Z =17 & | |] ! /o
m 8i

i=1

(12)

where g; = V'\ g;. We plot the 3D segmentation accuracy
against the number of supervoxels in Fig. 11b, e. GBH and
SWA again perform differently in IBSR and BuffaloXiph
datasets. But 3D UCM consistently performs well and 3D
OF UCM shows the best performance on the BuffaloXiph
dataset, especially when the number of supervoxels is low.

5.3.3 Supervoxel compactness

Compact supervoxels of regular shapes are always favored
because they benefit further higher level tasks in com-
puter vision. The compactness of superpixels generated
by a variety of image segmentation algorithms in 2D was
investigated in [66]. It uses a measure inspired by the
isoperimetric quotient to measure compactness. We use
another quantity defined in a similar manner to specific
surface area in material science and biology. In essence,
specific surface area and isoperimetric quotient both try
to quantify the total surface area per unit mass or volume.
Formally, given that S, = {s1,s2,...,5,} are supervoxels
generated by algorithms, the specific surface area used to

measure supervoxel compactness is defined as

n

1
specific surface area = — E

n
i=1

Surface(s;) (13)
Volume(s;)

where Surface() and Volume() count voxels on the surfaces
and inside the supervoxels respectively. Lower values of
specific surface area imply more compact supervoxels.
The compactness comparisons on IBSR and BuffaloXiph
are shown in Fig. 11c, f. We see that 3D UCM always
generates the most compact supervoxels except at small
supervoxel granularities on IBSR. GBH does not perform
well in this measure because of its fragmentation problem,
which is consistent with our qualitative observations.

Our quantitative measures cover boundary quality,
region quality, and supervoxel compactness and we feel
these are the most important aspects of supervoxel qual-
ity. 3D OF UCM always performs better than 3D UCM
and achieves best or the second best in all measures on
the BuffaloXiph dataset. In contrast, GBH and SWA fail
on some measures. In conclusion, we have demonstrated
that 3D OF UCM has improved supervoxel characteristics
(relative to 3D UCM) according to various measures on
spatiotemporal datasets while 3D UCM is a very compet-
itive supervoxel method on 3D volumetric datasets.
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6 Discussion

In this paper, we presented the 3D UCM supervoxel
framework, an extension of the most successful 2D image
segmentation technique, gPh-UCM, to 3D. Experimental
results show that our approach outperforms the current
state of the art in most benchmark measures on two dif-
ferent types of 3D volumetric datasets. When combined
with optical flow, 3D OF UCM performs very well on
spatiotemporal datasets. The principal difference between
3D UCM and its 2D counterpart is a reduced order
normalized cuts technique to overcome a computational
bottleneck of the traditional gPh-UCM framework when
directly extended to 3D. This immediately allows our
method to scale up to larger datasets. When we jointly
consider supervoxel quality and computational efficiency,
we believe that 3D UCM can become the standard bearer
for massive 3D volumetric datasets. We expect applica-
tions of 3D UCM in a wide range of vision tasks, including
video semantic understanding, video object tracking and
labeling in high-resolution medical imaging, etc.

Considering recent advances in deep learning-based
methods on vision tasks, we investigated state of the art
video segmentation methods using deep neural networks
and also performed additional experiments on introduc-
ing transfer learning to the 3D UCM framework. For the
BuffaloXiph dataset, we extracted its low-level features
(first 1-4 layers from VGG-19 [41]) from the state of
the art neural network, added to its original RBG chan-
nels, and used the new data as input to our 3D UCM
framework. The results did not show much improve-
ment. In general, the transfer learning-based 3D UCM
has very similar performance as 3D UCM. In some cases,
the transfer learning-based 3D UCM has lower segmen-
tation accuracy than 3D UCM since the CNN provided
additional features are effectively noise w.r.t. supervoxel
extraction. For this reason, we did not include this method
in the paper. And this remained the case even after we
did extra experiments with manually selected features. We
posit that it is hard to get hierarchical segmentation from
end-to-end deep learning networks because of the lack
of multilevel dense annotation. We also did experiments
similar to the pipeline of [67] using 3D UCM for video
object segmentation on the Densely Annotated VIdeo
Segmentation (DAVIS) dataset. Using supervoxels gener-
ated by our proposed work, with optical flow and saliency
map, our video object segmentation results demonstrate
its effectiveness and top rank performance in comparison
with other state of the art unsupervised methods.

Since this is a new and fresh approach to 3D seg-
mentation, 3D UCM still has several limitations from
our perspective. First, because it is a general purpose
technique, the parameters of 3D UCM have not been
tuned using supervised learning for specific applications.
In immediate future work, we plan to follow the metric
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learning framework as in [1] to deliver higher perfor-
mance. Second, since it is derived from the modular
framework of gPb-UCM, 3D UCM has numerous alterna-
tive algorithmic paths that can be considered. In image
and video segmentation, a better boundary detector was
proposed in [18], with different graph structures deployed
in [17, 68, 69] followed by graph partitioning alternatives
in [70, 71]. A careful study of these alternative options
may result in improved versions of 3D UCM. A GPU
implementation will almost certainly permit us to replace
the reduced order normalized cuts eigensystem with the
original eigensystem leading to better accuracy. Finally,
3D UCM at the moment does not incorporate prior
knowledge for segmentation [72, 73]. As transfer learning
methods develop in 3D leading to the publication of use-
ful 3D filters, these can be readily incorporated into the
local feature extraction step of 3D UCM. These avenues
represent relatively straightforward extension paths
going forward.
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