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Abstract

This paper describes the world’s largest gait database with wide view variation, the “OU-ISIR gait database, multi-view
large population dataset (OU-MVLP)”, and its application to a statistically reliable performance evaluation of
vision-based cross-view gait recognition. Specifically, we construct a gait dataset that includes 10,307 subjects (5114
males and 5193 females) from 14 view angles ranging 0°−90°, 180°−270°.
In addition, we evaluate various approaches to gait recognition which are robust against view angles. By using our
dataset, we can fully exploit a state-of-the-art method requiring a large number of training samples, e.g., CNN-based
cross-view gait recognition method, and we validate effectiveness of such a family of the methods.
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1 Introduction
Biometric-based human identificationmethods have been
intensively studied for the purpose of various application:
access control, surveillance, forensics, etc. As biometric
traits, face, voice, fingerprint, hand veins, iris, handwrit-
ing, and gait are available for such applications. Among
them, gait is one of themost practical trait for video-based
surveillance and forensics because it can be obtained
from a CCTV footage captured at a distance, as well as
applicable to an uncooperative subject. In fact, gait recog-
nition has started to be used in practical cases in criminal
investigation [1–3].
However, the availability of gait recognition for uncoop-

erative subjects induces problematic covariates, including
view angle, walking speed, clothing, surface, carrying sta-
tus, shoe, and time elapse. Therefore, for further progress,
it is essential that gait recognition is more robust against
these covariates. In this paper, we focus on the view angle
which is one of the most important covariates and hence
deal with cross-view gait recognition.
Cross-view gait recognition has been intensively stud-

ied in recent years. Robust approaches against the view
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angle are categorized mainly into two families: generative
and discriminative approaches. Given a matching pair of
gait features under different views, generative approaches
generate the gait features under the same view for bet-
ter matching [4–7]. The generative approaches do not,
however, guarantee the optimality in terms of discrim-
ination capability because they essentially optimize not
the discrimination capability itself but the accuracy of the
generated gait features.
The discriminative approaches aim at optimizing the

discrimination capability under view variations by learn-
ing discriminant subspaces or metrics. This family usually
applies machine learning-based approaches such as linear
discriminant analysis (LDA) [8, 9], primal rank support
vector machine (RankSVM) [10], and multi-view dis-
criminant analysis (MvDA) [11]. Moreover, discriminative
approaches using deep learning [12] has become flourish-
ing recently. Deep learning has achieved great successes
in many areas. An advantage of deep learning is that it
simultaneously executes feature extraction and recogni-
tion within a unified framework using a large amount
of training samples. In particular, a convolutional neu-
ral network (CNN), which considers spatial proximity
using a convolution operation, significantly improves the
accuracy of image recognition as demonstrated through
a series of ImageNet Large Scale Visual Recognition
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Challenges [13]. Moreover, the effectiveness of a CNN has
been demonstrated in research fields that are more rele-
vant with gait recognition, such as action recognition [14],
video classification [15], and face recognition [16].
There are some gait recognition studies using a CNN

framework [17–20], and they reported that the CNN-
based method outperformed the benchmark without
using CNN. Though CNN-based method requires a large
number of samples for sufficient training or for statisti-
cally reliable evaluation, there is no gait database including
a large number of subjects with wide view angles at the
same time. For example, though CASIA dataset B [21]
used for evaluation in [17, 18] contains gait images with
a wide range of view angles (11 views, 0 − 180°), it is
composed of only 124 subjects. On the other hand, OU-
ISIR gait database, large population (OU-LP) [22] used in
[17, 19, 20], contains gait images of a large population
(4016 subjects) but its range of view angle is narrow
(4 views, 55°, 65°, 75°, 85°). Therefore, the evaluation of
cross-view gait recognition using such databases may not
be statistically reliable.
In order to cope with such a problem, we built a

gait database comprising the multi-view large popula-
tion dataset. Specifically, our dataset named as “OU-ISIR
Gait Database, Multi-View Large Population (OU-ISIR,
MVLP)1” is the largest gait database in the world, com-
prising 10,307 subjects and including wide range view (14
views, 0°–90°, 180°–270°). Thanks to the dataset, we can
evaluate the performance of vairous approaches to cross-
view gait recognition including generative approaches and
discriminative approaches with or without a CNN frame-
work, in a statistically reliable way. In particular, since
the state-of-the-art CNN-based approaches require mas-
sive training samples to get the high accuracy, our dataset
can be exploited as the massive training samples in order
to draw real state-of-the-art accuracy of the CNN-based
approaches.

The outline of the paper is as follows: Section 2 intro-
duces existing gait databases, while Section 3 addresses
the construction of our dataset. The performance eval-
uation for cross-view gait recognition is described in
Section 4, and Section 5 presents our conclusions and
discusses future work.

2 Existing gait databases for cross-view gait
recognition

Existing major gait databases with multi-view images are
summarized in Table 1.
As the database with a wide range of view angle, there

exist Soton multimodal [23] (not released to the pub-
lic), CASIA database B [21], CMU Mobo [24], AVA [25],
WOSG [26], KY 4D [27], and OU-ISIR Treadmill Dataset
C [28] (not released to the public). The Soton Multimodal
was collected at the biometric tunnel [29] and contains
over 400 subjects multi-modal data (gait, face, and ear).
The subject’s gait is recorded by 12 cameras and 1 camera
records a front face view and 1 camera records a snapshot
of the side view for ear recognition. The CASIA database
B is frequently used for evaluation of cross-view gait
recognition since it contains large view variations from
front view (0°) to rear view (180°) with 18-degree inter-
val. This database recorded ten sequences per subject: six
normal sequences; two sequences with a long coat; two
sequences with a backpack. The CMU Mobo contains 25
subjects walking on a treadmill with six view variation
whose range is 0–360°. The subjects perform four differ-
ent walk pattern; slow walk, fast walk, incline walk, and
walking with a ball. The AVA contains videos of 20 walk-
ing subjects with a large variety of body size, who walk
along straight and curved paths. The database contains
six view angles. The WOSG contains 155 subjects with
eight view variations. The subjects were captured with
the short-wave infrared spectrum (900–1700 nm) in an
active, outdoor environment. KY 4D contains sequential

Table 1 Existing major gait databases with multi-view images

Name #Subjects #Views View range Environment Year

CMU Mobo [24] 25 6 0–360 Indoor, treadmill 2001

Soton small database [44] 12 4 – Indoor 2001

Soton multimodal(*) [23] > 400 12 – Indoor 2011

CASIA database A [45] 20 3 0–90 Outdoor 2001

CASIA database B [21] 124 11 0–180 Indoor 2005

AVA [25] 20 6 – Indoor 2013

WOSG [26] 155 8 – Outdoor 2013

KY 4D [27] 42 16 0–360 Indoor 2010

OU-ISIR Treadmill Dataset C(*) [28] 200 25 0–360 Indoor,treadmill 2010

OU-ISIR LP [22] 4016 4 55–85 Indoor 2012

OU-ISIR MVLP (Ours) 10, 307 14 0–90, 180–270 Indoor –

Databases with (*) are not released to the public. Items in bold indicate our database
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3D models and image sequences of 42 walking subjects.
The sequential 3D models are generated from gait image
sequences captured by 16 cameras. The OU-ISIR Tread-
mill Dataset C contains 200 subjects with 25 views: a
combination of 12 azimuth views with 30° interval and 2
tilt views; and 1 top view. Though these databases contain
images with a wide view angle, the number of subjects is
insufficient to evaluate of gait recognition in a statistically
reliable way.
On the other hand, the OU-ISIR LP [22] is the largest

dataset w.r.t. the number of subjects besides our dataset.
The dataset contains 4,016 subjects with a wide age range
from 1 to 94 years old also with an almost balanced gender
ratio. Though a large number of subjects data are con-
tained, its view variation is limited to only four view angles
(55–85°) within 30° of angular difference.
The relation between the number of subjects and the

number of view angles is shown in Fig. 1. In order to eval-
uate cross-view gait recognition in a statistically reliable
way, the database with a large number of subjects from a
wide view angle is definitely required.

3 The OU-ISIR gait database, multi-view large
population dataset

3.1 Capturing system
Our gait dataset, OU-ISIR MVLP, is constructed based
on gait images collected in the gait collecting frame-
work introduced in [30]. The gait data is collected in
conjunction with long-run exhibition at a sciencemuseum
(Miraikan) while informed consent is obtained through
electrical procedures. Gait images of 1280 × 980 pixels at
25 fps are captured by seven network cameras (cam1–7)
placed at intervals of 15° azimuth angles along a quarter

Fig. 1 The relation between the number of subjects and the number
of view angles in the existing publicly available gait databases and
our OU-ISIR, MVLP

of a circle whose center coincides with the center of
the walking course, where a green wall and a carpet are
installed for chroma-key, as shown in Fig. 2. Its radius is
approximately 8 m and height is approximately 5 m for
capturing images at depression angle to consider a surveil-
lance view while the view angles of CASIA dataset B and
OU-ISIR LP are almost horizontal. Each network camera
continuously capture a video during the opening hours,
photo-electronic sensors are built at the walking course
to sense a passing time of a subject, which is used to clip
a video of the target subject from the whole sequence.
The subject repeat forward (A to B) and backward (B to
A) walking twice of each, 28 gait image sequences (= 7
(cameras) × 2 (forward and backward) × 2 (twice)) can be
captured per one subject. The view angle of our dataset is
defined as shown in Fig. 3.
Gait sequence is the same for each of camera view

1 to 7, and camera view 1’ to 7’ in Fig. 3. Multi-view
images from the same gait sequence are preferable for
training the generative approaches, because the generative
approaches aims at transforming a gait feature of one view
to that of another view with being free from intra-subject
variations. Hence, they are useful for training the gener-
ative approaches within camera view 1 to 7, and camera
view 1’ to 7’, respectively, but not for training them across
one of camera views 1 to 7 and another one of camera
views 1’ to 7’.
On the other hand, such intra-subject variations of

gait itself actually exist between probe and gallery gait
sequences in a real situation, and hence we need to cope
with them. Discriminative approaches aim at mitigating
both view variations and intra-subject variations of gait
itself at the same time, and hence the intra-subject vari-
ations of gait itself included the training set are rather
welcomed to train a better discriminative models. Our
database contains intra-subject variations of gait itself for
all the camera views because of two gait sequences cap-
tured for each camera. Hence, they are also useful for
training the discriminative approaches.

3.2 Procedure of gait feature extraction
We extract Gait Energy Images (GEIs) [8], also known as
averaged silhouette [31], as gait feature for performance
evaluation. GEI is the most prevalent gait feature which
is obtained by simply aggregating the silhouette sequence
over one gait period. Thus, a GEI represents a mixture of
static and dynamic parts.
This section briefly describes how to extract GEIs in our

dataset (see Fig. 4). The procedure is as follows:

1. Silhouette sequence extraction. Human region is
extracted by a chroma-key technique, i.e., removing
green area based on HSV color space within the
walking course.
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Fig. 2 Camera setup

2. Size-normalization. Silhouette extracted in step 1 is
normalized by size based on the method used in [22].
First, the top, bottom, and horizontal center of the
silhouette regions are obtained for each frame.
Second, a moving-average filter is applied to these
positions. Third, we normalized the size of the
silhouette images such that the height is just 128
pixels according to the average positions, and the
aspect ratio of each region is maintained. Finally, we
produce an 88 × 128 pixel image in which the
average horizontal median corresponds to the
horizontal center of the image.

3. Gait period detection. Gait period is detected based
on size-normalized silhouette sequences from cam1
by using the method proposed in [22]. We adopt the
normalized auto correlation (NAC) of the
size-normalized silhouette images for the temporal
axis and determine the gait period as the frame shift

Fig. 3 Definition of view angles

corresponding to the second peak of the NAC.
Since, in our dataset, gait images captured by seven
cameras simultaneously, the gait period detected
based on silhouette sequences of cam1 is also used as
the gait period for the other six cameras (cam2–7).

4. GEI extraction. GEI is extracted by averaging the size-
normalized silhouette sequences pixel-wise over one
gait period. If several gait periods are detected from
one walking sequence, the nearest one to the center
of the walking course is used. Examples of generated
GEIs for each view angles are shown in Fig. 5.

3.3 Subject statistics
We captured gait images of 78,378 subjects by the frame-
work mentioned above from 15 July 2015 to 27 June 2016
and defined a subset of gait images of 10,307 subjects
(5114 males and 5193 females with vairous ages, ranging
from 2 to 87 years) from 14 view angles, ranging 0°−90°,
180°−270°. Moreover, since they are captured from Octo-
ber to February, subjects wear various clothes according
to a season change. Detailed distributions of the subjects’
gender and age are shown in Fig. 6. Almost all the sub-
jects are of Asian descent. Over 100 subjects are included
for every 5 years from 5 to 69 years old for each gender.
Therefore, the dataset is useful not only for cross-view gait
recognition but also for age estimation or gender classi-
fication. The number of subjects of each view angles is
summarized in Table 2. Note that the number of subjects
are slightly different among view angles since low qual-
ity GEIs with a large loss or blur are removed with visual
confirmation.

4 Performance evaluation of cross-view gait
recognition

First, we evaluated performances of existing approaches
to cross-view gait recognition: generative approaches
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Fig. 4 A flow of GEI extraction

and discriminative approaches. In addition, we con-
sidered two settings: recognition with a cooperative
gallery subject (i.e., cooperative setting) and with
an uncooperative gallery subject (i.e., uncooperative
setting). View angles of the gallery GEIs are the same
among enrolled subjects in cooperative setting, whereas

they may differ for each subject in uncooperative
setting.
Second, we analyzed a sensitivity of the number of

training subjects on the recognition accuracy when we
adopt the state-of-the-art cross-view gait recognition, i.e.,
CNN-based method.

Fig. 5 Examples of GEI
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Fig. 6 Distributions of the subjects’ gender and age. “Unknown” indicates the cases where declared ages are judged strange by visual confirmation

4.1 Benchmarks
We describe eight existing methods used for evaluation
experiments. Two of them are generative approaches,
five of them are discriminative approaches, which further
fall into those with and without CNN respectively, and
the other one is direct matching without any training,
i.e., Euclidean distance between GEIs (call it DM) as a
baseline.
Generative approach

• View transformation model (VTM) [5]:
As general approaches to cross-view gait recognition,
a family of VTM [6, 32, 33] have been widely studied
and a singular value decomposition-based VTM [5] is
the most basic one among them. We then exploit it as
a baseline for the generative approach.
The method obtains the VTM with training data of
multiple subjects from multiple view angles. In a
recognition phase, the VTM transforms gallery
features into the same view angle as that of an input
feature, and the features match under the same view.

• Double quality-dependent VTM (wQVTM) [34]:
Among the family of VTMs, wQVTM is the most
advanced one, and hence we exploited it as the
state-of-the-art of the generative approaches. This
VTM-based method incorporates a score

normalization framework with quality measures that
encode the degree of the fitness of the trained VTM
to gallery and test data.

Discriminative approach without CNN

• Linear discriminant analysis (LDA) [35]:
The method is based on linear discriminant analysis,
which is the most conventional approach and hence
widely exploited in many fields (e.g., Fisher face [36]).
We therefore adopt this a a baseline for the
discriminative approach.
Specifically, we first apply principal component
analysis (PCA) to an unfolded feature vector of GEI
to reduce dimension and subsequently apply LDA to
get discriminant features.

Discriminative approach with CNN

• 1in-GEINet [19](see Fig. 7a):
The method is based on one of the simplest CNN
where one input GEI is fed and the number of nodes
in the final layer (fc4) is equal to the number of
training subjects. Soft-Max value calculated from
output of the final layer is regarded as a sort of
probability of matching up to a corresponding subject.

Table 2 The number of subjects in OU-ISIR MVLP

Observation angle [deg]

0 15 30 45 60 75 90 180 195 210 225 240 255 270

Total 9441 9715 10,151 10,099 9581 10,175 10,165 9430 9751 10,197 10,113 9579 10,197 10,085

Male 4643 4782 5017 4996 4742 5040 5040 4635 4799 5055 5004 4742 5053 5019

Female 4798 4933 5134 5103 4839 5135 5125 4795 4952 5142 5109 4837 5144 5066
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a

c d

b

Fig. 7 Network architectures of CNN-based methods. Numbers
written on left side of conv, pool, fc indicate [(#kernel)×(kernel size,
width × height) / (stride)], [(#kernel size, width × height) / (stride)],
[(#output node)] respectively. Ns written on 1in-GEINet indicates the
number of training subjects. a 1in-GEINet, b Siamese, cMT, d LB

• Siamese [20, 37, 38] (see Fig. 7b):
The method is based on two parallel CNNs known as
Siamese network with shared parameters. In the
network, output of fc4 layer is regarded as a feature
vector of each input GEI. A contrastive loss for each
pair is defined as d2 (squared L2 distance of the
feature vectors of two input GEIs) if they are the
same subject, or as so-called hinge loss, i.e.,
max(margin - d, 0)2 if they are different subjects.

• Mid-level at the top (MT) [17] (see Fig. 7c):
The method is based on two parallel CNNs with
shared parameters where two non-linear projections
are applied before computing the differences between
pairs of images on conv3 layer. The pixel-wise
summation of weighted entries by using pair-filter is
calculated as output of conv3 layer. Soft-Max value
indicates a probability of an event that they are the
same subject.

• Local at the bottom (LB) [17](see Fig. 7d):
The method is based on CNN whose structure is
similar to MT except for a layer where we compute
the differences between pairs of images. A linear
projection is applied before computing the
differences between pairs of GEIs on conv1 layer.

Direct matching

• Direct matching (DM) [22]:
The method based on direct matching, i.e., L2
distance in the original feature space. We regard GEIs
as feature vectors whose dimension is equal to the
number of pixels in GEI and compute L2 distance of
two GEIs as a dissimilarity.

4.2 Setup
We divided the 10,307 subjects into two disjoint groups of
almost the same size, that is, 5153 training and 5154 test-
ing subjects. Additionally, as mentioned previously, each
subject had 28 GEIs (14 view angles × 2 sequences).
For the generative approaches, it was assumed that

probe and gallery view angles are known and the VTM
from a source view to a target view are trained using
gait features with possible view angle. On the other hand,
for the discriminative approaches, in order to roughly
align walking direction in GEIs, GEIs with over 180°
view angle, were flipped right-to-left based on perspec-
tive projection assumption [39], and parameters of CNN
or LDA model are trained for data including all view
angle data simultaneously. Note that rough walking direc-
tion estimation (leftward vs. rightward) is relatively easily
done compared with detailed pair-wise view estimation
(30° vs. 45°) required in the generative approaches.
Hyper-parameters of CNN are determined in an ad hoc

manner without applying parameter tuning. However, we
confirmed that over-fitting was not occurred and learnt
parameters were converged sufficiently.

4.3 Evaluation criteria
In each setting, we evaluated the recognition accuracy
for two tasks; verification, i.e., one-to-one matching and
identification, i.e., one-to-many matching. For the verifi-
cation task, we calculated false acceptance rates (FARs)
and false rejection rates (FRRs). We then calculated equal
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error rates (EERs) of the FAR and the FRR as a trade-off
criterion of the verification capability. Moreover, we cal-
culated rank 1 identification rate as a criterion of the
identification capability.

4.4 Results for a cooperative setting
We first evaluated the recognition accuracy of 1in-
GEINet, the discriminative approach with the simplest
CNN, for all possible view angle paris (14 probe views
vs. 14 gallery views) as shown in Table 3. As a result, in
the case of the same view angles (e.g., 0° vs. 0°), the accu-
racy is the highest, and the larger the view differences is,
the lower the accuracy become. Moreover, since two GEIs
with 180◦ view difference (one of them is flipped GEI) are
virtually regarded as those from the same-view pair due
to perspective projection assumption [39] as described in
Section 4.2; the trends of 0–90° gallery vs. 0–90° probe
(upper left sub-matrix in Table 3) are similar to those of
0–90° gallery vs. 180–270° probe (upper-right sub-matrix
in Table 3), 180–270° gallery vs. 0–90° probe (lower-left
sub-matrix in Table 3), and 180–270° gallery vs. 180–270°
probe (lower-right sub-matrix in Table 3). For the simplic-
ity of the performance evaluation, we focus on four typical
view angels (0°, 30°, 60°, 90°) hereafter.
We then evaluated the recognition accuracy of all

benchmarksmentioned to in Section 4.1 for all the pairs of
the four typical view angles. The rank 1 identification rates
and the EERs are shown in Tables 4 and 5, respectively.

Table 3 Recognition accuracy of 1in-GEINet for all view angle
pairs for a cooperative setting

a

b

Darkness of cells in table indicates goodness of recognition accuracy

Naturally, DM only works for pairs of the same view
angle and poorly perform for the pair of the different
view angles, since it is directly affected by spatial dis-
placement of the corresponding body parts in GEIs due
to view angle difference (i.e., large intra-subject vari-
ation). On the other hand, the accuracies of the dis-
criminative approach without CNN, i.e., LDA, and the
generative approach, i.e., VTM and wQVTM, are a lit-
tle bit better than that of DM except for the case of the
rank 1 identification rate of wQVTM. This is because
the VTM-basedmethod, mitigates spatial displacement of
the corresponding body parts in GEIs by view transfor-
mation process, while that the discriminative approaches
mitigate the intra-subject differences due to view vari-
ations. Thus, degree of decrease of accuracy depending
on the view angle difference in these cases is limited
compared with the case of DM. As for wQVTM, the dis-
similarity of GEIs is corrected depending on the quality
of generated GEI based on trained VTM. If a GEI for
testing is much different from GEIs for training, qual-
ity of the GEI for testing becomes low, the dissimilarity
is modified based on its low quality so as to lessen the
dissimilarity considerably, and hence it behaves as a so-
called wolf in Doddington biometric zoo concept [40].
This is why the rank 1 identification rates of wQVTM is
worse. This problem would not be revealed when using
OU-ISIR LP database or CASIA dataset B. It is because
that view angle difference of OU-ISIR LP dataset is small,
CASIA dataset B has a small subject variation and both
of them have a small walking variation due to captur-
ing under operator’s control. By using our dataset with
a large number of subjects from a wide range of view
angle, such problem can be evaluated in a statistically
reliable way.
As for discriminative approaches with CNN, we can see

their accuracies are relatively better than the other family
of approaches. Taking a closer look at those approaches,
we also noticed that 1in-GEINet yielded the best accuracy
for the identification task (i.e., rank 1 identification rate),
while the Siamese yielded the best performance for the
verification task (i.e., EER). We will discuss these points in
Subsection 4.7.

4.5 Analysis of the effect of increasing view angle
In order to analyze the effect of increasing view angle
in detail, we rearranged the cross-view gait recognition
results by a baseline, i.e., 1in-GEINet shown in Table 3
from viewpoint of the effect of increasing view angle.
For this purpose, we picked up 0°, 45°, and 90° as typical
view angles of probes and then showed how the accu-
racy changes as view angle difference between probe and
gallery increases in Fig. 8. Here, because our database
missed the view angles from 90° to 180° and also those
from 270° to 360°, we assume that the accuracies for
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Table 4 Rank 1 identification rate (%) for thinned view angle pairs for a cooperative setting

(a) VTM (b) wQVTM

Probe Probe

Gallery 0 30 60 90 Mean Gallery 0 30 60 90 Mean

0 68.8 0.5 0.2 0.1 17.4 0 0.1 0.0 0.0 0.0 0.0

30 0.7 82.2 2.1 0.8 21.4 30 0.0 81.7 0.0 0.8 20.6

60 0.3 3.2 77.6 5.4 21.6 60 0.0 0.0 78.0 0.0 19.5

90 0.2 1.1 4.2 80.9 21.6 90 0.0 0.0 0.0 0.0 0.0

Mean 17.5 21.7 21.0 21.8 20.5 Mean 0.0 20.4 19.5 0.2 10.0

(c) LDA (d) 1in-GEINet

Probe Probe

Gallery 0 30 60 90 Mean Gallery 0 30 60 90 Mean

0 70.0 3.2 0.3 0.2 18.4 0 75.9 32.1 7.0 7.4 30.6

30 4.6 87.1 11.1 1.9 26.2 30 17.3 89.6 43.7 22.7 43.3

60 0.3 9.3 83.3 19.5 28.1 60 4.0 43.4 86.5 55.4 47.3

90 0.1 0.6 12.6 85.9 24.8 90 3.4 21.5 50.2 90.7 41.5

Mean 18.7 25.0 26.8 26.9 24.4 Mean 25.2 46.6 46.8 44.0 40.7

(e) Siamese (f) MT

Probe Probe

Gallery 0 30 60 90 Mean Gallery 0 30 60 90 Mean

0 52.7 23.7 11.1 11.3 24.7 0 70.7 16.7 4.4 3.9 23.9

30 18.4 78.6 32.6 27.6 39.3 30 14.1 88.1 36.9 17.0 39.0

60 8.0 33.5 76.1 39.6 39.3 60 4.0 39.2 85.7 44.2 43.3

90 7.9 26.5 36.5 82.1 38.2 90 3.2 16.2 43.4 89.3 38.0

Mean 21.8 40.6 39.1 40.1 35.4 Mean 23.0 40.0 42.6 38.6 36.1

(g) LB (h) DM

Probe Probe

Gallery 0 30 60 90 Mean Gallery 0 30 60 90 Mean

0 74.4 16.5 3.5 2.8 24.3 0 68.8 0.8 0.1 0.0 17.4

30 13.6 89.3 36.0 16.2 38.8 30 1.2 82.2 1.4 0.3 21.3

60 2.9 36.2 88.4 44.7 43.0 60 0.1 1.1 77.5 5.6 21.1

90 2.2 14.0 41.2 91.7 37.3 90 0.0 0.2 4.1 80.9 21.3

Mean 23.3 39.0 42.3 38.9 35.9 Mean 17.5 21.1 20.8 21.7 20.3

gallery view θ can be a good approximation for that for
gallery view (360° – θ ) based on the left-right gait sym-
metry assumption as introduced in the literature [39],
and hence substituted these accuracies for gallery view
(360° – θ ) by those for gallery view θ in Fig. 8. As
a result, the accuracies for frontal-view (i.e., 0°) probe
rapidly drop as the view angle difference increases because
0° gait features lack important forward-backward motions
(e.g., arm swing and stride) and such motions gradu-
ally appear as the view angle increases from 0° to 90°,
which makes matching more difficult. On the other
hand, the accuracy drop for side-view (i.e., 90°) probe is
a little bit mitigated compared with 0° probe, because

that the important forward-backward motions are com-
monly observable in side view (i.e., 90°) and oblique
views (e.g., 60°, which corresponds to −30° difference in
Fig. 8). Moreover, it is noticeable that the accuracies for
oblique view (i.e., 45°) are relatively good even for increas-
ing view angle differences. This can be explained from
two points as also introduced in the literature [39]: (1)
gait features from oblique view contains both forward-
backward motions observed in the side view as well as
the body width observed in the frontal view to some
extent, and (2) gait features for 90° view difference from
the oblique view (e.g., 135° gallery for 45 probe) is
well approximated by the left-right gait symmetry and
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Table 5 EER (%) for thinned view angle pairs for a cooperative setting

(a) VTM (b) wQVTM

Probe Probe

Gallery 0 30 60 90 Mean Gallery 0 30 60 90 Mean

0 6.9 34.2 40.0 40.7 30.5 0 5.1 30.1 37.8 38.9 28.0

30 32.3 6.0 27.3 31.9 24.4 30 30.8 5.1 22.0 31.3 22.3

60 35.8 22.9 7.1 21.5 21.8 60 34.8 19.1 6.0 16.9 19.2

90 36.2 29.0 22.7 5.9 23.4 90 34.5 25.8 17.7 4.5 20.6

Mean 27.8 23.0 24.3 25.0 25.0 Mean 26.3 20.1 20.9 22.9 22.5

(c) LDA (d) 1in-GEINet

Probe Probe

Gallery 0 30 60 90 Mean Gallery 0 30 60 90 Mean

0 7.1 27.3 38.3 40.0 28.2 0 3.4 7.4 16.8 17.0 11.2

30 27.4 5.5 22.1 32.8 21.9 30 7.7 1.9 5.4 8.6 5.9

60 38.8 22.4 6.6 18.6 21.6 60 16.8 5.3 2.4 4.6 7.3

90 40.2 32.8 18.5 5.5 24.2 90 17.4 8.6 4.6 1.7 8.1

Mean 28.4 22.0 21.4 24.2 24.0 Mean 11.3 5.8 7.3 8.0 8.1

(e) Siamese (f) MT

Probe Probe

Gallery 0 30 60 90 Mean Gallery 0 30 60 90 Mean

0 2.5 3.9 6.8 6.0 4.8 0 2.3 6.3 11.2 10.7 7.6

30 4.0 1.4 2.9 2.8 2.8 30 6.3 1.4 3.4 4.8 4.0

60 7.0 2.7 1.4 2.5 3.4 60 11.4 3.5 1.3 3.1 4.8

90 6.2 2.7 2.6 1.1 3.1 90 11.5 5.1 3.0 1.1 5.2

Mean 4.9 2.7 3.4 3.1 3.5 Mean 7.9 4.1 4.7 4.9 5.4

(g) LB (h) DM

Probe Probe

Gallery 0 30 60 90 Mean Gallery 0 30 60 90 Mean

0 2.3 6.4 12.1 11.7 8.1 0 6.9 26.8 43.3 46.0 30.8

30 6.8 1.5 4.0 5.2 4.4 30 27.3 6.0 28.4 39.7 25.4

60 12.8 4.2 1.5 3.2 5.4 60 43.2 29.2 7.1 19.9 24.9

90 12.6 5.7 3.2 1.0 5.6 90 46.5 39.6 19.8 5.9 27.9

Mean 8.6 4.5 5.2 5.3 5.9 Mean 31.0 25.4 24.6 27.9 27.2

weak perspective projection assumption. The accuracy
for the oblique-view probe averaged over the view range
where the view difference between the probe and the
gallery is from −90° to 90° is better than those for
the frontal and side views. This point is more clar-
ified by the averaged accuracies for probe views as
shown in Fig. 9.

4.6 Results for an uncooperative setting
We employed the same subject lists as the cooperative
setting to evaluate the uncooperative setting. Gallery
views are randomly selected from 14 view angles
(0°, 15°,· · · , 270°) for each subject. The results for the

uncooperative setting are shown in Table 6. Note that we
did not evaluate about VTM and wQVTM because they
need the information of observation view angle for gait
recognition in advance and such an assumption does not
suit the uncooperative setting. According to Table 6, the
results have almost the same tendency as the cooperative
setting: 1in-GEINet is the best in terms of identifica-
tion and Siamese is the best in terms of verification.
In comparison of the mean accuracy of cooperative
setting using the four typical views and uncooperative set-
ting using all the 14 views, that of uncooperative setting
looks much worse. However, one of the reasons for this
performance degradation is that uncooperative gallery
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a b

Fig. 8 Averaged accuracies for each angular differences. a Rank 1 identification rate. b EER

view range (14 views) is wider than cooperative one
(0°, 30°, 60°, 90°).
Actually the mean rank 1 identification rates for the

cooperative setting in 1in-GEINet for all gallery view
angles (14 views) and typical probe view angles (4 views),
which is shown as the results of Table 3a, are 16.0, 44.9,
42.9, and 42.6% in the cases of 0°, 30°, 60°, 90° prove views,
respectively. And these results are comparable (in fact,
slightly better) with those of the uncooperative setting
shown in Table 6 (15.7, 41.0, 39.7, and 39.5%, respectively).
The slight performance degradation of the uncooperative
setting is described as the difference between probe and
gallery GEIs of the same subject with different view angles
is sometimes larger than that of different subjects with the
same view angle, which is actually an essential challeng-
ing aspect of the uncooperative setting. In other words,
this limited performance degradation of the uncoopera-
tive setting compared with the cooperative setting means
that the discriminative approaches with CNNs overcome
the difficulties of the uncooperative setting by effectively

Fig. 9 Averaged accuracies for each typical probe views

suppressing the appearance changes due to view angle
differences while keeping the inter-subject appearance
variation.

4.7 Discussion
We discussed the experimental results of the discrimina-
tive approaches with CNN from several viewpoints.

1in-GEINet vs. Siamese, MT, and LB In 1in-GEINet,
namely, the method based on CNN with one input, the
parameters of CNN are trained so that the soft-max of
the node of fc4 layer corresponding to the same subject
as input GEI can be high. Specifically, the soft-max loss is
calculated as cross-entropy of the soft-max of correspond-
ing node. Since the soft-max normalized scores as that
their summation is equal to one, not the absolute value of
scores before soft-max but the relative scores against the
other subjects are highlighted. Because the identification
rate depending not on absolute scores but on this relative
scores among the subjects, it is more suitable for the iden-
tification task rather than verification task, where absolute
score affects the performance.
On the other hand, in Siamese, MT, and LB, namely,

the methods based on CNN with two inputs, the param-
eters are learned so that it is easy to discriminate whether
two inputs are the same subject or not. Therefore, these
methods look effective as methods for verification task.
In fact, according to Tables 4 and 5, the rank 1 iden-

tification rates of 1in-GEINet is better than those of the
other CNNs with two inputs. Moreover, EERs of two input
CNNs are better than those of 1in-GEINet.

Siamese vs. MT and LB In Siamese, a matching pair of
GEIs are compared as forms of feature vectors with 52
dimensions, i.e., output of the fc4 layer with full connec-
tion, at the last part of the CNN and hence information
on spatial proximity is more mixed at the matching stage.
On the other hand, In MT and LB, a matching pair of
GEIs are compared as forms of images at the middle
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Table 6 Recognition accuracy for uncooperative setting

(a) Rank 1 identification rate (%) (b) EER

Probe Probe

Method 0 30 60 90 Mean Method 0 30 60 90 Mean

LDA 8.1 12.4 12.3 11.8 11.1 LDA 32.1 27.9 28.7 30.6 29.8

1in-GEINet 15.7 41.0 39.7 39.5 34.0 1in-GEINet 14.4 6.3 7.8 8.1 9.2

Siamese 15.6 36.2 33.1 36.5 30.3 Siamese 5.9 2.9 3.8 3.4 4.0

LB 14.2 32.7 32.3 34.6 28.5 LB 9.5 4.7 5.5 5.1 6.2

MT 11.1 31.5 31.1 29.8 25.9 MT 8.9 4.1 4.9 4.8 5.7

DM 7.1 7.4 7.5 9.7 7.9 DM 46.1 40.1 42.2 46.3 43.7

or the first part of the CNN before going through full
connection.
Thus, MT and LB is directly affected by appearance

difference both derived from inter-subject difference and
intra-subject difference due to spatial displacement of the
corresponding body parts by view angle differences than
Siamese.
As a result shown in Tables 4 and 5, in the case of the

small (no) view angle difference, the accuracy of LB and
MT is higher than that of Siamese since leveraging the
inter-subject difference is more effective than mitigating
the intra-subject difference due to view angle differences
in such a case. On the other hand, in the case of a
larger view angle difference, Siamese is better than LB and
MT, since mitigating the intra-subject difference due to
view angle difference is more effective than leveraging the
inter-subject difference.

MT vs. LB In LB, two raw GEIs are compared at the first
part, on the other hand, in MT, two compressed GEIs by
convolution and pooling layers are compared at the mid-
dle part of the CNN. LB where comparing the raw GEIs
more leverages appearance difference considering spa-
tial proximity than MT where comparing the compressed
GEIs.
According to Tables 4 and 5, in the case of the small (no)

view angle difference, the accuracy of LB is higher, while
in the case of a larger view angle difference, the accuracy
of MT is higher.

Discussion summary We summarize the discussion in
this section as follows:

1. 1in-GEINet, CNN with one input, is effective for
identification task, and Siamese, MT, and LB, CNNs
with two inputs, are effective for verification task.

2. Compared with CNNs with two inputs, degree of
leveraging the inter-subject difference considering
spatial proximity is LB > MT � Siamese, on the
other hand, degree of mitigating the intra-subject

differences due to view angle difference is Siamese �
MT > LB.

4.8 Sensitivity of the number of training subjects on
recognition accuracy

The accuracy of CNN-based method largely depends
on the number of training samples. We analyze the
sensitivity of the number of training subjects on the
recognition accuracy. Three hundred and seven sub-
jects among 10,307 subjects in our dataset are used
for testing data and various number of subjects among
the rest 10,000 subjects are used for training data. 1in-
GEINet with the simplest network architecture was used
in the experiment.
The sensitivity is shown in Fig. 10. Note that the aver-

aged result for all view angle pairs for cooperative setting
are plotted on the graph. From this graph, the larger
the number of training subjects become the better the
accuracy is. Additionally according to Fig. 1, the rank 1
identification rate of 10,000 training subjects is higher by
approximately 23% compared to that of 150 training sub-
jects, i.e., the almost same number of subjects for CASIA
dataset B and WOSG with the largest population among

Fig. 10 Relation between the number of training subjects and
recognition accuracy (averaged value for all views)
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a b

Fig. 11 Relation between the number of training subjects and recognition accuracy for each angular differences. a Rank 1 identification rate. b EER

the existing databases with wide view angles, and EER of
10,000 training subjects is lower by approximately 5%.
Furthermore, the results for four typically angular

difference (0°, 30°, 60°, 90°) are shown in Fig. 11. From
these graphs, in the case of smaller view difference, the
accuracy remain to high even if the number of training
subjects decreases. In contrast, in the case of larger view
difference, the accuracy drastically drop as an amount of
view difference become larger. In such a case, it is not easy
to authenticate gait images because intra-subject appear-
ance variations by view differences can be larger than
inter-subject appearance variations. Therefore, database
with more various view angles would be required for
sufficient training.

From the above results, it has been confirmed that the
accuracy of the cross-view gait recognition was increased
significantly with an increase in the number of training
subjects for CNN-based methods which requires a large
training data, especially in the case of large view differ-
ence. Thus, it indicated the importance of our dataset,
OU-ISIR MVLP, with a large subject number and large
view variation.

5 Conclusion
This paper described the construction of a gait database
comprising a large population dataset with a wide view
angle and presented a statistically reliable performance
evaluation of vision-based cross-view gait recognition.
This dataset has the following advantages over existing
gait databases: (1) the number of subjects is 10,307, which
ismore than two times greater than the number of existing
public large-scale database, (2) the view angle variation is
wide, 14 view angles, ranging 0°−90°, 180°−270°, (3) the
quality of all GEIs is guaranteed by visual confirmation.
Using our dataset, we carried out a statistically reliable

performance comparison of cross-view gait recognition
by various approaches. Moreover, we confirmed the effec-
tiveness of our dataset with the largest population for

recent CNN-based approaches to gait recognition which
generally requires a large number of training samples but
achieves the state-of-the-art performance.
Further analysis of gait recognition performance using

our dataset is still needed. For example, our dataset
enables the evaluation of gender classification or age esti-
mation, cross-database recognition. Thus, evaluating such
problems is a future work. Though we evaluated only
GEI-based methods in order to compare gait recogni-
tion methodologies, there are many gait features that can
be used for input images, such as DeepGait [41], CGI
(chrono-gait image) [42], and FDF (frequency-domain
feature) [43]. Thus, evaluating such gait features is also a
future work.

Endnote
1 The data have been published in the form of silhou-

ette image sequences and GEIs (Gait Energy Images)
in PNG format. http://www.am.sanken.osaka-u.ac.jp/
BiometricDB/GaitMVLP.html.
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