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Abstract

Fine-grained visual categorization has recently received great attention as the volumes of labeled datasets for
classification of specific objects, such as cars, bird species, and air-crafts, have been increasing. The availability of large
datasets led to significant performance improvements in several vision-based classification tasks. Visual classification
of maritime vessels is another important task, assisting naval security and surveillance applications. We introduced,
MARVEL, a large-scale image dataset for maritime vessels, consisting of 2 million user-uploaded images and their
various attributes, including vessel identity, type, category, year built, length, and tonnage, collected from a
community website. The images were categorized into vessel type classes and also into superclasses defined by
combining semantically similar classes, following a semi-automatic clustering scheme. For the analysis of the
presented dataset, extensive experiments have been performed, involving several potentially useful applications:
vessel type classification, identity verification, retrieval, and identity recognition with and without prior vessel type
knowledge. Furthermore, we attempted interesting problems of visual marine surveillance such as predicting and
classifying maritime vessel attributes such as length, summer deadweight, draught, and gross tonnage by solely
interpreting the visual content in the wild, where no additional cues such as scale, orientation, or location are
provided. By utilizing generic and attribute-specific deep representations for maritime vessels, we obtained promising
results for the aforementioned applications.

Keywords: Fine-grained object categorization, Naval surveillance, Deep representations for maritime vessels,
Maritime vessel attributes, Convolutional neural networks, Deep learning

1 Introduction
The coastal and marine surveillance systems are mainly
based on sensors such as radar and sonar, which allow
detecting marine vessels and taking responsive actions.
Vision-based surveillance systems containing electro-
optic imaging sensors can also be exploited for developing
robust and cost-effective systems. Categorization of mar-
itime vessels is of utmost importance to improve the capa-
bilities of such systems. For a given image of a ship, the
goal is to automatically identify it using computer vision
and machine learning techniques. Vessel images include
important clues regarding different attributes such as ves-
sel type, category, gross tonnage, length and draught.
A large-scale dataset would be beneficial for extracting
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such clues and learning compelling models from images
containing several types of vessels.
Presence of benchmark datasets [1] with large quantities

of images and manual labels with meaningful attributes
has resulted in a significant increase in visual object cate-
gorization performance by allowing the use of convenient
machine learning methods such as deep architectures
[2]. Later, these powerful deep architectures have been
employed in a more challenging problem, fine-grained
visual categorization, by either training on datasets from
scratch [3], by fine-tuning deep architectures trained on
large-scale datasets [4], or by exploiting the previously
trained architectures with specific modifications [5].
To classify images with a fine-grained resolution, a

considerable amount of training data is necessary for
a respectable model generalization. Thus, fine-grained
datasets were collected for specific object categories.
Some examples are aircraft datasets [6, 7]; Caltech-UCSD
bird species dataset [8] consisting of 12 K images, car
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make, and model datasets; Standford cars dataset [9] con-
taining 16 K car images; and CompCars dataset [10] of
130 K images. One work related to marine vessel recogni-
tion is [11], where 130,000 random example images from
the Shipspotting website [12] is utilized and a convolu-
tional neural network [2] is trained for classifying vessel
types. In our dataset, 140,000 images are engaged for ves-
sel type classification among 26 superclasses constructed
using a semi-supervised clustering approach. Further-
more, constructed vessel superclasses are balanced; the
training set is arranged to have an equal number of exam-
ples from each superclass, after augmenting data for vessel
type classes with lower number of examples. However,
there is a significant imbalance of examples among the
classes in [11], which may result in a bias in classifica-
tion towards the dominant classes with more examples.
Hence, imbalance makes it more difficult to validate the
performance of different classifiers. In this work, for mea-
suring vessel classification performance, we report mean
per class accuracies. In addition, we accomplish further
important tasks with a vast amount of vessel images and
obtain pleasing results, which will be described in details
in the following sections.
In order to utilize the-state-of-the-art fine-grained

visual classification methods for maritime vessel cate-
gorization, we collected a dataset consisting of a total
of 2 million images downloaded from the Shipspot-
ting website [12], where hobby photographers upload
images of maritime vessels and corresponding detailed
annotations including types, categories, tonnage, draught,
length, summer deadweight, year built, and International
Maritime Organization (IMO) numbers, which uniquely
identify ships. To the best of our knowledge, the col-
lected dataset, MARitime VEsseLs (MARVEL) [13, 14],
is the largest-scale dataset with meta-data composed of
the aforementioned attributes, suited for fine-grained
visual categorization, recognition, retrieval, and verifica-
tion tasks, as well as any possible future applications.
In addition to the introduced large-scale dataset, our

other major contributions are presenting generic repre-
sentations for maritime vessels, as well as targeting visual
vessel analysis from five different aspects: (1) vessel type
classification, (2) vessel identity verification, (3) vessel
retrieval, (4) vessel identity recognition with and with-
out prior type knowledge, and (5) specific vessel attributes
(draught, length, gross tonnage, and summer deadweight)
prediction and classification. To verify the practicality of
MARVEL and encourage researchers, we present base-
line results for these tasks. By providing relevant splits of
the dataset for each application and inspecting the consis-
tency of associated labels, we form a comparison basis for
visual analysis of maritime vessels. Moreover, we believe
our structured dataset will be a benchmark for evalu-
ating approaches designed for fine-grained recognition.

The researchers may also develop several new applica-
tions with the help of this dataset in addition to the
aforementioned applications.

2 MARVEL dataset properties
MARVEL dataset consists of 2 million marine vessel
images collected from Shipspotting website [12]. For most
of the images in the dataset, the following attributes are
available: beam, year built, draught, flag, gross tonnage,
IMO number, name, length, category, summer deadweight,
MMSI, vessel type.
Among the above attributes, we observe that the most

useful and visually relevant categories are as follows: (1)
Vessel type, (2) category, (3) draught, (4) gross tonnage, (5)
length, (6) summer deadweight, and (7) IMO number. Ves-
sel type is assigned based on the type of cargo a vessel
will be transporting. For instance, if a vessel carries pas-
sengers, its type is very likely to be a Passengers Ship. The
dataset contains 1,607,190 images with valid annotated
type labels belonging to one of 197 categories. Vessel type
histogram, highlighting the major categories, is depicted
in Fig. 1c. Another available attribute is category, which is
another vessel description. Example categories with a sub-
stantial number of members are chemical and products
tankers, containerships built 2001–2010, and Tugs (please
see Fig. 1a). All collected images have been assigned a
category out of 185 categories in MARVEL dataset. IMO
number is another category, which is an abbreviation for
International Maritime Organization number. Similar to
the chassis numbers of cars, IMO numbers of vessels
uniquely identify the ships registered to IMO regardless
of any changes made in their names, flags, or owner-
ships. Of the collected images, 1,628,056 are annotated
with IMO numbers (please refer to Fig. 1b). There are
a total of 103,701 unique IMO numbers in MARVEL
dataset.
Considering the fact that images which have been

assigned identical IMO numbers belong to the same ves-
sels, we are able to check the consistency of other attribute
annotations and fill out the missing entries when nec-
essary. First, zero or invalid entries are discarded. Next,
we convert all attribute labels to metric unit system to
account for the presence of some labels in an imperial sys-
tem. Finally, we maintain the consistency of labels for each
vessel separately by applying median filters on available
annotations. Engaging such preprocessing procedures, we
obtain very large groups of images that include valid
attribute labels. The attributes we focus on are IMO num-
ber, vessel type label, draught, gross tonnage, length, and
summer deadweight (Fig. 2). For draught, an attribute
which is defined as the vertical distance between the
bottom of vessel hull and waterline, there are 1,067,946
images carrying validated labels. Gross tonnage is a unit-
less index calculated using the internal volume of vessels.
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(a)

(b)

(c)
Fig. 1 Distribution of collected vessel images: Number of images belonging to each photo category, individual vessel, and vessel type are depicted
in a, b, and c, respectively. The largest group among photo categories is chemical and product tankers. General cargo is the vessel type including
highest number of images. Further statistics are provided on the right columns: In b, 8388 marine vessels are present containing at least 50 images.
In c, there are 132 vessel type categories including at least 100 images

There are 1,583,882 images with valid annotated labels for
gross tonnage. Validated annotations for summer dead-
weight, a measure of carrying capacity of a ship, are
provided for 1,508,974 of all images. Length data of the
maritime vessels are made available for 1,107,907 images.
In summary, when combined, a total of 1,006,868 images
retain valid annotated labels for all vessel type, IMO
number, draught, length, summer deadweight, and gross
tonnage attributes.

3 Potential computer vision tasks onMARVEL
dataset

Huge quantity of images and their annotations, existing in
MARVEL, makes it applicable to directly employ recent
methods utilizing deep architectures such as AlexNet [2]
for vessel categorization. One may choose one of the
provided vessel attributes such as vessel type or category
and apply classification methods for categorizing images
according to the selected attribute.
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(a) (b)

(c) (d)
Fig. 2 Histograms of four vessel attribute values on MARVEL dataset: a draught, b length, c gross tonnage, and d summer deadweight

In MARVEL there are more than 8000 unique vessels
(carrying unique IMO numbers) having more than 50
example images as shown in Fig. 1b. It is also feasible
to use the dataset for both vessel verification and iden-
tity recognition, which could be a vital part of a maritime
security system, analogous to a scenario where vehicle
make andmodel recognition is crucial for a traffic security
system.
The main foci of this study on MARVEL dataset are five

folds: (1) vessel classification since content of cargo that a
ship carries, specified by its type, is crucial for maritime
surveillance, (2) identity verification where the ultimate
goal is to find out if a pair of images belong to the same
vessel with a unique IMO number, (3) retrieval where one
might desire to query a vessel image and retrieve a certain

number of similar images from a database, (4) identity
recognition which is a challenging though interesting task
which aims at recognizing a specific vessel within vessels
of same type or among all other vessels (This might be
likened to a facial recognition task.), and finally (5) specific
attribute prediction and classification, where the objective
is to grasp draught, length, gross tonnage, and summer
deadweight of a vessel by simply analyzing the 2-D visual
content. With an aim to achieve these goals, we design
generic and attribute specific representations which are
powerful in describing marine vessel images.
For vessel classification, one of the most important

tasks, we first generate a set of superclasses which may
contain vessels of more than one type, since some sub-
sets of vessel types are not visually distinguishable even
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with human supervision. The sole differences within the
subsets arises from the invisible content of cargo rather
than the visual appearance of ships. A concrete example
of such a case arises for the pair of vessel types: crude
oil tanker and oil products tanker, which is illustrated
in Fig. 3. Although the two vessel types have distinct
functional differences, their visual characteristics are con-
gruent especially when images are captured by cameras
located far away from these vessels; when the vessels
occupy a small portion of images and their decks are not
visible from such a view point, it is tough to distinguish
them. Hence, we merge some of the types to generate
superclasses which are semantically correct and visually
discriminable. In Section 4, we describe the details for
combining vessel types. As inspired by [15], the presence of
multi-level relevance information and hierarchical group-
ing of vessels may allow exploitation of MARVEL dataset
for a further performance improvement for particular
marine vessel recognition tasks in the future.
Vessel verification task serves for deciding whether a

pair of vessel images belong to the same vessel or not.
This may be beneficial for a naval surveillance scenario,
where a specific vessel is required to be tracked using an
electro-optic imaging system.
For the task of vessel retrieval relating to vessel classifica-

tion, the goal is to retrieve images belonging to providing
a query image, several images with similar content are
retrieved from the database.
Vessel recognition aims at revealing the accurate iden-

tity of a vessel by analyzing an unseen example image of
it and finding out the matching vessel within a group of

vessels. This task may be particularly useful for scenar-
ios of marine surveillance and port registration. For this
task, first, we performed recognition for vessels consider-
ing their type labels, for instance, identifying a passenger
ship among other passenger ships. Next, we attempt a
more challenging recognition problem, identifying ves-
sels where no additional cues such as vessel type labels or
category labels are given.
Moreover, as novel problems, we attempt tasks of pre-

dicting and classifying vessel attributes: draught, gross
tonnage, length, and summer deadweight. The objective
here is to quantify these attributes based on 2-D visual
content only, which may ameliorate the practicality of
coastal surveillance systems, since that avoids the need for
retaining meta-data for optical systems, namely camera
parameters, camera position, and distance to the vessel,
while estimating physical dimensions of a vessel based on
its appearance. Another beneficial use of this task may be
for safe marine traffic routing as well as for the calculation
of port access and transit fees, when vessel dimensions
need to be known. Furthermore, there are studies, prov-
ing that presence of attribute-based representations are
helpful for several computer vision tasks including object
recognition [16], detection [17], and identification [18].
The attribute-based learned representations for marine
vessels in this work may be utilized in a similar fashion
aiding other visual analysis tasks.

4 Superclasses for vessel types
To generate superclasses from vessel types, the first
50 major vessel types containing the largest amount of

Fig. 3 Visual comparison of two very similar classes: crude oil tanker (top row) and oil products tanker (bottom row)
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example images are selected and sorted according to their
quantity. The vessel typewith the largest number of images
which is employed in our superclass generation, is gen-
eral cargo, consisting of 324,561 example images. The
class with the smallest number of images is the tim-
ber carrier, accommodating only 1837 images. In this
work, to investigate the visual similarities among ves-
sel types, MatConvNet Toolbox [19] implementation of a
pre-trained convolutional neural network (CNN) archi-
tecture, VGG-F [20], is adopted. Features are extracted
posterior to resizing images to 224 × 224. Utilizing the
penultimate layer acctivations of VGG-F [20] as visual
representations of images, each image is described by
a 4096-dimensional feature vector. Based on these fea-
ture vectors, we calculated a dissimilarity matrix for
the 50 major vessel classes. To generate superclasses,
1/10 of all collected images belonging to 50 major
classes are randomly selected (approximately 130,000
images) and individual class statistics are estimated.
Prior to calculating a dissimilarity matrix, we removed
outliers following the preprocessing step explained
below.

4.1 Outlier removal
Although image annotations for most categories are valid
and correct, interior images of vessels are also present
in MARVEL dataset. Thus, we prune outliers within
individual vessel types and avoid them while computing
the dissimilarity matrix. First, feature vector dimension-
ality is reduced to 10 by principal component analysis
(PCA) using all examples of 50 major vessel type classes,
since Kullback-Leibler divergence is utilized in dissimi-
larity computation and determinants of very high dimen-
sional matrices become unbounded. After dimensionality
reduction, each vessel type class is processed indepen-
dently and Gaussian distributions are fitted; means and
covariances of each distribution are estimated. The fea-
ture vectors of corresponding classes are whitened to
obtain unit variance within each class. We intent to fil-
ter out unlikely examples in the dataset to obtain a
clear dissimilarity matrix. Next, we utilize χ2 distribution
since the dataset is already whitened. For each exam-
ple in individual classes, the sum of the square values
of the 10-dimensional feature vectors are used as sam-
ples drawn from the χ2 distribution with 10◦ of free-
dom. Cumulative distribution function (cdf) value for
each sample is calculated and removed from the class
set if the cdf value is greater than 0.95, which corre-
sponds to the samples drawn from the 5% tail of the χ2

distribution.

4.2 Dissimilarity matrix and superclass generation
Once outliers are removed from each vessel type class by
the above procedure, the remaining examples are used to

compute a dissimilarity matrix.We compute symmetrized
divergence as the dissimilarity index. Symmetrized diver-
gence DS(P,Q) of two classes, namely P and Q, is defined
as DS(P,Q) = 1

2DKL(P||Q) + 1
2DKL(Q||P), where DKL(.||.)

stands for Kullback-Liebler divergence of two multivari-
ate Gaussian distributions. The computed dissimilarity
matrix is depicted in Fig. 4.
By exploiting the dissimilarity matrix, we merge similar

vessel type classes using a threshold. Prior to threshold-
ing, we applied spectral clustering methods with the help
of the dissimilarity matrix. Nevertheless, the resulting
groups were not semantically meaningful. Hence, we opt
to continue by increasing the threshold for the similari-
ties of the pairs of classes (i.e., this corresponds to each
entry of the dissimilarity matrix). If dissimilarity index of
a pair of classes is below a threshold, the pair is assigned
to the same superclass. We keep increasing the threshold
before it reaches to a point where semantically irrele-
vant classes (human supervision is adopted here) start to
merge, and we define it as the final threshold for clus-
tering. The majority of the resulting superclasses contain
reasonable classes. The generated vessel type superclasses
with more than one vessel type are (1) tankers (consisting
of oil products tanker, oil/chemical tanker, tanker, chem-
ical tanker, crude oil tanker, lpg tanker, lng tanker, ore
carrier), (2) carrier/floating (consisting of timber carrier,
floating storage production, self discharging bulk carrier),
(3) supply vessels (which contain offshore supply ship,
supply vessel, tug/supply vessel, anchor handling vessel,
multi purpose offshore vessel), (4) fishing vessels (which
include trawler, fishing vessel, factory trawler, fish carrier),
and (5) dredgers (which contain suction dredger, hopper
dredger). Finally, marginal adjustments are done manu-
ally to make all superclasses as meaningful as possible.
These adjustments include merging superclass contain-
ing only trailing suction hopper dredger with superclass
consisting of Suction Dredger and Hopper Dredger. In
addition, seven vessel types are removed entirely from
the set of superclasses. The classes to be eliminated
are decided according to the average dissimilarity of the
classes to the rest. The salient overall dissimilarity scores
are detected manually. The removed classes are, namely
(1) general cargo (it is significantly confusing with the con-
tainer ship and ro-ro cargo), (2) cargo/containership, (3)
research/survey vessel, (4) cement carrier, (5) multi pur-
pose offshore vessel, (6) passenger/cargo ship, and (7) cable
layer. The removed classes both visually and function-
ally contain more than at least two separate classes, i.e.,
passenger/cargo ship involve both passenger vessels and
general cargo vessels. The merged classes with threshold-
ing also contain visually very meaningful vessel types, i.e.,
all of the fish-related vessels are clustered within the same
superclass. The distribution of final 26 superclasses can be
viewed in Fig. 5.
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Fig. 4 Dissimilarity matrix for 50 major vessel type classes, computed based on symmetrized divergence. Lower values indicate more similarity

4.3 Superclass classification
As demonstrated in Fig. 5, there exists an imbalance
between superclasses. Nevertheless, even the superclass
with the least amount of examples has a large quan-
tity of examples. Therefore, to classify superclasses of
vessels, it is feasible to train a deep CNN architecture
AlexNet [2]. To avoid the imbalance between superclasses,
we acquire equal numbers of samples from each class
for both training and testing, as 8192 and 1024 images,

respectively. For superclasses with examples less than the
required amount, we generate additional examples by data
augmentation (using different croppings of images). Con-
sequently, our training and test sets contain 212,992 and
26,624 examples, respectively, although we have 140,000
unique examples. We should also note that no images of
the same vessels appear in both training and test sets.
The classification performance is quantified by the help
of a normalized confusion matrix [7]. The practical +

Fig. 5 Distribution of the vessel types. In total, 1,190,169 images, belonging to one of 26 superclasses, are available for vessel type classification
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metric for a fine-grained classification task can be the
class-normalized average classification accuracy, which is
calculated as the average of diagonal elements of a nor-
malized confusion matrix, C, entries of which are defined
as follows [6]:

Cpq = |{i : ŷi = q ∧ yi = p}|
|{i : yi = p}| , (1)

where |.| denotes the cardinality of the set, ŷi indicates the
estimated class label, and yi is the actual label for the ith
training example. The final performance measure is the
mean of the diagonal elements of the matrix C. This value
for 26 superclasses is 73.14% for the normalized confu-
sion matrix depicted in Fig. 6. To emphasize the validity
and efficacy of the learned network, we also compare it
with another method utilizing multi-class support vector
machine (SVM) with the Crammer and Singer multi-class
SVM [21] implementation of [22] in LIBLINEAR [23]
library. The feature vectors for training SVM are extracted
from the VGG-F network of [20], their dimensionality is
reduced to 256, and PCA whitening is applied. Due to
memory requirements and computational complexity in
optimization, we use half of the training set.We report the
class-normalized average classification accuracy in testing
as 53.89%. Compared to the use of pre-learned VGG-F
weights with an SVM classifier, AlexNet trained from
scratch has 35% improvement in accuracy.

5 Experiments on potential applications
In this section, we make use of our dataset, MARVEL,
for potential maritime applications and vessel verifica-
tion, retrieval, identity recognition, and attribute pre-
diction and classification. In the following subsections,
these applications and necessary experimental settings are
explained.
During all experiments, we follow training and test-

ing strategies similar to [10]. First, 8000 vessels with
unique IMO numbers are selected such that each ves-
sel will have 50 example images, resulting in a total of
400,000 images. This data is divided into two splits: train-
ing and testing. The training set consists of 4035 ves-
sels (201,750 example images in total), and the test set
contains 3965 vessels (198,250 example images in total).
There exist 109 vessel type labels among 400,000 exam-
ples, and training and test sets are split in a way that
the number of vessel types are identical in both sets. In
the rest of the paper, we call the training split of this
subset as IMO training set, and the test split as IMO
test set.
We propose three deep CNN-based generic representa-

tions for marine vessels on IMO training set by making
use of vessel type and/or vessel IMO labels . Hence, we
train the same architecture of [2] as in vessel classifica-
tion task and modify it accordingly with an aim to capture
more details in vessel images: For the last layer, rather than
26 label classes, we use 109, 4035, and 4144 label classes.

Fig. 6 Normalized confusion matrix for categorization of 26 superclasses representing vessel types. Accuracy, computed by averaging diagonal
entries, is 73.14%
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These three different classifiers focus on discriminating
vessel types, vessel IMO numbers (classifying individual
vessels on IMO training set), and both vessel types and
IMO numbers (jointly classifying type and IMO num-
bers of vessels on IMO training set), respectively. We
compare the performances of these three representations
over computer vision tasks, which are described below in
details.
Deep representations for example images are extracted

as the penultimate layer activations of the trained net-
works (as in the superclass generation part in Section 4)
with 4096 dimensions. More discriminative features being
desired, we extract the penultimate layer activations prior
to the rectified linear unit (ReLU) layer, which carry more
information than the layer after ReLU since the negative
values are cast to zero after ReLU. This choice makes our
vessel verification performance better than the case with
the deep representations after ReLU case.
During all experiments utilizing convolutional neural

networks, we select batch sizes as 256 without normal-
ization and decaying learning rates, consisting of logarith-
mically equally spaced values between 0.01 and 0.0001.
For superclass classification, we train the networks for 60
epochs and for attribute classification and prediction, we
train the networks for 50 epochs, since we notice that
the training error does not decrease with further train-
ing. The implementation of the networks are based on the
MatConvNet Toolbox [19].

5.1 Vessel verification, retrieval, and recognition
5.1.1 Vessel verification
Akin to face verification [24], car model verification is
applied in CompCars dataset [10] to serve for conceiv-
able purposes in transportation systems. That kind of
task is claimed to be more complicated compared to face
verification, since car model verification is performed
on images with unconstrained viewpoints. On MARVEL
dataset, we performmaritime vessel verificationwhere the
attribute to be verified is the vessel identity. Please note
that our task is more challenging compared to identifying
other attributes such as category or vessel type. Further-
more, this problem is more challenging than both car
model and face verification tasks, since it is desired to
identify/verify pairs of individual vessels by looking only
at their appearances which have more diversity.
After extracting the generic deep representations (109

and 4144-dimensional output based), 50,000 positive pairs
(belonging to same vessels) and 50,000 negative pairs
(belonging to different vessels) are picked randomly from
both training and test splits out of 201,750 training
examples and 198,250 test examples, respectively1. For
all 400,000 training and testing examples, feature vector
dimensionality is reduced to 100 by PCA exploited with
only training examples. Moreover, all 100-dimensional

examples are PCA whitened since whitening increases
performance of SVM classifier. Concatenating two 100-
dimensional vectors, we describe each pair of vessel
during verification experiments. Finally, for each generic
representation, we train a binary SVM classifier with a
radial basis function kernel on the generated training
set by using the implementation of LIBSVM library [25].
Additionally, we attempt end-to-end learning for verifi-
cation. For this experiment, we construct a Siamese neu-
ral network, based on AlexNet architecture, with shared
weights, and added a contrastive loss layer after the last
fully connected layers. Contrastive loss [26], incurring for
similar and dissimilar pairs of images is defined as,

L = (1 − Y )
1
2
(DW )2 + Y

1
2

{max(0,m − DW )}2 (2)

where Y is a binary label, assigned to 1 for similar images,
otherwise set to 0. m > 0 is a margin set for dissimi-
lar pairs, and DW is the distance to be learned for pairs
of images, �X1 and �X2. DW is calculated as the Euclidean
distance between outputs of parametrized function GW .

DW ( �X1, �X2) = ∥
∥GW ( �X1) − GW ( �X2)

∥
∥
2 (3)

The precision recall curves for the two generic repre-
sentations and the Siamese network-based representation,
obtained by varying the classification thresholds, are plot-
ted in Fig. 7. We also compare the performance of SVMs
with the nearest neighbor (NN) classifiers. For NN clas-
sifier, each test pair is assigned the label of the training
pair for which the Euclidean descriptor distances are the
smallest. The resulting precision and recall values of SVM
and NN classifier are presented in Table 1. All classifiers

Fig. 7 Precision-recall curves for vessel verification task for three
representations designed for marine vessels: 109 (shown in blue),
4144 (shown in green) dimensional output, and Siamese network
based (shown in orange)
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Table 1 Vessel verification results on 50,000 positive pairs and 50,000 negative pairs of vessels for the nearest neighbor and SVM
classifiers by utilizing the generic and end-to-end learning-based vessel representations learned in IMO training set, which does not
contain any images of the vessels in IMO test set

Representation True positives True negatives False positives False negatives Accuracy Precision Recall

NN 109-dimensional output based 44,978 40,198 9,802 5,022 85.18% 0.82 0.90

SVM 109-dimensional output based 45,503 45,422 4,578 4,497 90.93% 0.91 0.91

NN 4144-dimensional output based 47,305 41,148 8,852 2,695 88.45% 0.84 0.95

SVM 4144-dimensional output based 46,225 47,744 2,256 3,775 93.97% 0.95 0.92

NN Siamese network based 44,459 40,390 9,610 5,541 84.85% 0.82 0.89

SVM Siamese network based 45,869 46,150 3,850 4,131 92.02% 0.92 0.92

are quite satisfactory, which is very promising for a real-
world verification application. SVM performs better than
NN for all tested representations, since it generalizes bet-
ter, making use of all training data while learning support
vectors. The 4144-dimensional output-based generic rep-
resentation, carrying finer details for the vessels performs
the best for both classifiers. Verification performance is
slightly lower for end-to-end learning -based represen-
tation compared to the 4144-dimensional output-based
vessel representation. One reason may be the limitation
in random and insufficient sampling of image pairs out of
4035 different vessels during training.

5.1.2 Vessel retrieval
Compelling amount of research efforts [27–30] have been
put on content-based image retrieval (CBIR) as volumes
of image databases are dramatically growing. Particularly,
vessel retrieval is another promising application, poten-
tially required in a maritime security system, where a user
would like to query a database with a vessel image and
retrieve similar images. It may also help annotating ves-
sel images uploaded to a database when no meta-data is
present. In our application, the retrieved content is not
chosen as either the superclasses of vessel types that we

constructed as the coarse attribute in Section 4.3, or the
IMO number (aiming to identify the exact vessel), which
is too fine for a retrieval task (This is studied as a recogni-
tion problem in Section 5.1.3.). Instead, we use 109 vessel
types of the 8000 unique vessels with 50 example images,
as the content for the retrieval task. We perform content
based vessel retrieval (CBIR), using Euclidean (L2) and
chi-squared (χ2) distances as the similarity metric for four
different vessel representations.
The first representation is one of the presented generic

descriptions for marine vessels, a 109-dimensional clas-
sifier output of the network, trained on IMO training
set. The second representation is the 4144 dimensional
output-based generic description designed for distin-
guishing both vessel types and identities. Third repre-
sentation is based on a Siamese network similar to the
one, end-to-end trained in Section 5.1.1. However, this
network focuses on matching vessel types. On the other
hand, we also compare these learned deep representa-
tions (employing the content information) with another
effective representation, designed for object classification.
Hence, we use pre-learned VGG-F weights to extract
4096-dimensional features. We train a multi-class SVM to
train a classifier for 109 vessel types on the IMO training

Fig. 8 Vessel retrieval results for four representations: the feature vectors of pre-trained VGG-F network (shown in magenta), AlexNet network based
109 (shown in blue), 4144 (shown in green) dimensional output based, and Siamese network (shown in orange) representations
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Fig. 9 Vessel type specific recognition: Average recognition accuracies computed within each of the 29 vessel types on IMO testing set are depicted
for extracted 109- (blue), 4035- (red), and 4144- (green) dimensional output-based representations and VGG-VD-19-based 4144-dimensional
output-based representation (gray) learned in IMO training set

set. For each example, classifier responses of dual com-
binations of 109 classes (generated during the multi-class

SVM phase) are utilized as
(
109
2

)

dimensional feature

vectors. By utilizing these four representations, various
numbers of images are retrieved and mean average preci-
sion curves are generated, as depicted in Fig. 8.
Here, the deep representations learned specifically for

maritime vessels significantly outperform the deep repre-
sentation (VGG-F) learned for general object categoriza-
tion for 1000 classes [2, 20] for both distance metrics. In
addition, χ2 distance is superior in CBIR than L2 distance,
for the tested representations. A 109-dimensional output-
based generic representation performs the best in this
experiment, since it is specifically designed for learning
vessel types. The retrieval performance of Siamese net-
work, utilizing end-to-end learning, is lower, compared to
109 and 4144-dimensional representations.

5.1.3 Vessel recognition
Visual object recognition is one of the most crucial topics
of computer vision. Especially, face recognition has been
studied extensively, and state-of-the-art methods [31, 32],

which perform effectively on the benchmark datasets
[33–35], have been proposed. Since encouraging perfor-
mance results are obtained with recent methods, another
application performed, utilizing MARVEL, is vessel recog-
nition task, where the ultimate goal is to perceive a vessel’s
identity by its visual appearance. It might not be mean-
ingful for object types, other than maritime vessels or
faces, such as cars, since same car models with same color
have no visual differences and technically are not distin-
guishable. Nevertheless, individual vessels generally carry
distinctive features, as shapes of vessels belonging to the
same vessel type category may vary significantly due to
their customized construction processes. Here, we uti-
lize the learned generic vessel representations as feature
vectors for vessels.
We perform identification for two scenarios. First, we

assume the vessel type labels are provided. Hence, recog-
nition is performed among individual classes separately,
e.g., vessels belonging to the passenger ships class are
learned and recognized. Multi-class SVMs are trained
for images belonging to each vessel type and classifi-
cation is done. Among the 3965 vessels in IMO test
set, there exist 29 vessel types that have at least 10

Table 2 Vessel recognition performance on IMO testing set, composed of 3965 marine vessels, by utilizing nearest neighbor search on
109-, 4035-, and 4144-dimensional output-based representations learned in IMO training set

109-dim. output
based representation

4035-dim. output
based representation

4144-dim. output
based representation

4144-dim. output based
representation (VGG-VD-19)

Recognition accuracy 23.87% 59.25% 65.13% 65.78%
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Table 3 Vessel attribute prediction performance, measured as
correlation of manual truth and predicted labels for 158,850
images in IMO testing set

Draught Gross tonnage Length Summer deadweight

SVM 0.7556 0.8301 0.8696 0.7930

CNN 0.7911 0.2699 0.9042 0.0830

unique vessels, and each unique vessel has 50 exam-
ple images. For recognition, we first divide the exam-
ples of each vessel into fivefolds where each fold has
10 examples per vessel. The training and testing sets
contain fourfolds (40 examples) and onefold (10 exam-
ples) per vessel, respectively. We perform fivefold cross-
validation for classifying all 50 example images of each
vessel. For each multi-class SVM, the number of classes
equals the number of unique vessels of that particu-
lar vessel type. In Fig. 9, the recognition performances
are illustrated for each vessel type and by using each
generic vessel representation as feature vectors. Rep-
resentations trained over 4035- and 4144-dimensional
output labels, which aim to learn specific vessels in
IMO training set, perform significantly better than the
representation trained on 109-dimensional output labels
which only learns vessel types on IMO training set.
Being able to learn both, hence extracting both coarse
and fine details, 4144 dimensional output-based repre-
sentation is the best of three for generic vessel descrip-
tion. Random chance for recognition is also depicted
in the figure in order to prove the success of the pre-
sented generic marine vessel representations. Addition-
ally, we tested the performance of 4144 dimensional
representation when employing a deeper neural net-
work VGG-VD-19 [20], and we obtain high performance
similarly.
Vessels belonging to research survey vessels, suction

dredgers, and supply vessels type classes of are the most
distinguishable ones with recognition accuracies above
90%. On the other hand, vessels of crude oil tankers,
vehicle carriers, and containership classes have less dis-
tinct differences and a slightly lower recognition per-
formances are achieved, compared to the rest of the
classes. Please note that, as number of unique vessels
increase in a vessel type group, the random chance and
recognition rates slightly decrease as expected, since it
becomes a more challenging recognition problem. Yet,
recognition accuracies over 77% can be obtained even
though the number of unique vessels exceeds a hun-
dred, such as in ro-ro cargo and chemical tanker vessel
types.
As a second scenario for recognition, we attempt recog-

nition of vessels when there is no prior information,
namely, when type labels are not present. Here, the goal is

to classify images of 3965 vessels in IMO testing set by the
use of generic vessel representations learned on images of
IMO training set. Large number of classes makes it com-
putationally infeasible to train models with a SVM; thus,
we employ a nearest neighbor classifier for this experi-
ment. In a similar setting, we split images of individual
vessels in IMO testing set into five non-overlapping folds
(fourfolds as a training and onefold as a testing split), and
we perform fivefold cross-validation for and classify all 50
example images of each vessel. For each image in a test-
ing fold, we find the best matching image among training
images and assign its label for the test image. Repeating
the same experiment for four generic representations, we
conclude that 4144-dimensional output-based represen-
tations (AlexNet based and VGG-VD-19 based) perform
better than the other two. The recognition rates are listed
in Table 2.

5.2 Vessel attribute prediction and classification
MARVEL dataset includes several labeled vessel attributes
some of which relate to the visual content. Here, as inter-
esting applications, by studying only the visual content,
we targeted predicting and classifying four important
attributes: draught, gross tonnage, length, and summer
deadweight.
The draught of a vessel is a measure describing the

vertical distance between the waterline and the bottom
of vessel hull. Draught, defining the minimum depth
of water a vessel can operate, is an important fac-
tor for navigating and routing vessels while avoiding
shallow water pathways. Length of a vessel does mat-
ter for navigation and marine traffic routing, as well
as for calculating fees during vessel registration. Con-
sequently, estimating length of a vessel effectively from
a single image may be very beneficial for maritimeap-
plications. Gross tonnage is a nonlinear measure cal-
culated based on overall interior volume (from keel to
funnel) of a vessel. It is important in determining the
number of staff, safety rules, registration fees, and port
dues. Summer deadweight defines how much mass a
ship can safely carry. It excludes the weight of the ship
and includes the sum of the weights of cargo, fuel,
fresh water, ballast water, provisions, passengers, and
crew [36].

Table 4 Vessel attribute prediction performance, measured as
coefficient of determination between manual truth and
predicted labels for 158,850 images in IMO testing set

Draught Gross tonnage Length Summer deadweight

SVM 0.598 0.554 0.743 0.481

CNN 0.770 0.419 0.863 0.466
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(a) (b)

(c) (d)
Fig. 10 Predicted and true values of draught within example vessel categories: Significant correlations (r) are found after hypothesis testing as
indicated by p values for asphalt/bitumen tankers (a), cable layer (b), patrol vessels (c), and supply vessels (d)

Such efforts of attribute estimation is especially valu-
able for coastal guarding and surveillance, since it allows
grasping the physical specifications of a vessel remotely
and only by a captured image. In order to achieve these
objectives, we both test the use of our powerful 4144-
dimensional output-based generic vessel representation
and also employ specific attribute-based deep representa-
tions. Please note that estimating these attributes are very
challenging due to the lack of notion of scale, pose, perspec-
tive, camera parameters, etc. The only available informa-
tion is the appearance of a vessel. For all experiments of
attribute prediction, we learn models in IMO training set
and evaluate performances of the learned models in IMO
testing set. Images missing valid attribute labels were not
used in these experiments. Attribute labels, as opposed to
being discrete numbers as in vessel type labels or IMO

number labels, are continuous and might be unique for
each vessel.
We design two sets of experiments: regression and

classification. Approaching the problem as a regression
task, we represent vessel images by either generic deep
models we designed for marine vessels or deep mod-
els trained for estimating specific attributes. As in the
previous experiments, we extract the penultimate layer
activations of the trained networks as feature vectors
and utilize a support vector regressor [25, 37] for pre-
diction. For learning attribute-specific deep models, we
use AlexNet as a base CNN architecture and modify
the last loss layer with an objective to minimize an
L2-norm loss, approaching the problem as a least squares
regression. For performance evaluation, we compute two
measures.
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Table 5 Vessel attribute classification performance of generic and attribute-specific representations, calculated for four attributes on
158,850 images of IMO testing set

Classified attribute Employed repre-
sentation

Top 1 accuracy Top 2 accuracy Top 3 accuracy Top 4 accuracy Top 5 accuracy

Draught Generic model
+ SVM

0.1302 0.3104 0.4432 0.5506 0.6320

Gross tonnage Generic model
+ SVM

0.4755 0.6393 0.7418 0.8178 0.8678

Length Generic model
+ SVM

0.4539 0.6345 0.7317 0.8019 0.8510

Summer deadweight Generic model
+ SVM

0.4304 0.6209 0.7310 0.7998 0.8525

Draught Attribute-specific
trained CNN

0.1834 0.4159 0.5761 0.6884 0.7774

Gross tonnage Attribute-specific
trained CNN

0.5515 0.7492 0.8556 0.9131 0.9454

Length Attribute-specific
trained CNN

0.5289 0.7266 0.8257 0.8896 0.9328

Summer deadweight Attribute-specific
trained CNN

0.5155 0.7364 0.8317 0.8938 0.9288

The first measure is Pearson correlation coefficient
between predicted labels and manual truth. It is defined
as,

r =
∑N

i=1(ŷi − ¯̂y)(yi − ȳ)
√

∑N
i=1(ŷi − ¯̂y)2

√
∑N

i=1(yi − ȳ)2
, (4)

where ŷi and yi are single indexed samples of predicted
labels and true labels, respectively. N is the sample size,
which is 158,850, corresponding to all test images with

valid attribute labels. These results are given in Table 3.
The highest correlations obtained are 0.9042 for length,
0.7911 for draught, 0.8301 for gross tonnage, and 0.7930
for summer deadweight.
The second measure we report is the coefficient of

determination, namely R2, which quantifies how well
regression model fits the data. It is calculated as,

R2 =
∑N

i=1(ŷi − ȳ)2
∑N

i=1(yi − ȳ)2
. (5)

(a) (b)
Fig. 11 Confusion matrices for classifying draught: a generic vessel features combined with a support vector machine classifier and b learned
draught-specific representation combined with a softmax classifier
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(a) (b)
Fig. 12 Confusion matrices for classifying gross tonnage: a generic vessel features combined with a support vector machine classifier and b learned
gross tonnage-specific representation combined with a softmax classifier

Table 4 shows the R2 values when predicting four
attributes. SVM classifier employs the generic represen-
tation learnt for vessel type classification, whereas CNN
employs a representation specifically learnt for predicting
attributes. Table 4 shows that attribute-based representa-
tion performs better for predicting length and draught;
nevertheless, it performs slightly worse for gross tonnage
and summer deadweight. Thus, we may conclude that for
predicting physical attributes, values of which are visually
explicit, specific representations are more effective. For
predicting attributes such as weight, our method relies on
vessel type classification.
For further analysis, we plot predicted draught values

for four example vessel categories separately in Fig. 10.
The annotated attributes differ for individual vessels
within specific vessel categories. However, the significant
correlations, between the true values and predicted val-
ues for vessels belonging to the same types, show that
learnt representations, capturing visual cues, are effec-
tive in attribute prediction. The trained neural networks
simply try to estimate vessel attributes similar to how
human can do, based on clues such as vessel type and also
appearance (visible parts of a vessel).
As another experiment, we quantize the attribute labels

and relabel and assign the images in IMO training set
accordingly to 20 distinct classes such that each class
has equivalent number of examples for a balanced train-
ing. Next, we train a multi-class classifier, using both the
generic vessel representation (combined with a nonlin-
ear SVM) and also specific deep representations (softmax
classifier) for each attribute. For instance, in training, we

use a total of 134,000 images for draught, 142,000 images
for gross tonnage, 140,000 images for length and 148,000
images for summer deadweight. For testing, we use all
158,850 images of IMO test set for which all attribute
annotations are present. Top five classification accura-
cies for the attributes and employed representations are
summarized in Table 5. Though generic vessel repre-
sentation performs reasonably well, trained deep models
which focus on specific attributes are significantly bet-
ter in attribute categorization. The classification results
are also depicted as normalized confusion matrices in
Figs. 11, 12, 13, and 14. The imbalance of the training set
results in coarser ranges for classes around the extrema
values and very fine classes otherwise. The entries of the
confusion matrices are high valued along the diagonal
entries, which shows that the learned models are effective
in capturing the desired attribute information.

6 Discussions
Introducing MARVEL, a large-scale dataset for maritime
vessels, our goal is to point out several research problems
and applications for maritime images. MARVEL dataset,
composed of a massive number of images and their meta-
data, carries interesting attributes to be considered for
visual analysis tasks. In this work, we presented our efforts
for visual classification of maritime vessel types, retrieval,
identity verification, identity recognition, and estimation
of physical attributes such as draught, length, and tonnage
of vessels. For each of these tasks, we provide the details
(experimental settings, labels, training and testing splits)
to make results reproducible.
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(a) (b)
Fig. 13 Confusion matrices for classifying length: a generic vessel features combined with a support vector machine classifier and b learned
length-specific representation combined with a softmax classifier

For organizing the dataset, first, we performed seman-
tic analysis and combined vessel type classes which are
visually indistinguishable. Next, we pruned annotations
for attributes semi-automatically, converting them to cer-
tain metric units, filtering out the missing and wrong
entries and ensured reliability of the labels. We also
present baseline results for several computer vision tasks
to inspire future applications on MARVEL. Moreover,
we provide generic deep representations for maritime
vessels and prove their success in aforementioned tasks

by performing extensive experiments.We achieve promis-
ing performance in vessel classification, recognition, and
retrieval. Moreover, we observe that attributes are pre-
dictable as long as they are visually distinguishable. Hence,
attributes such as length and draught can be estimated
accurately and by solely exploiting visual data. What
remains of key interest for future work is the enhance-
ment of performance for the aforesaid tasks, which can be
fulfilled by utilizing more powerful visual representations,
developing sophisticated methods.

(a) (b)
Fig. 14 Confusion matrices for classifying summer-deadweight: a generic vessel features combined with a support vector machine classifier and
b learned summer deadweight-specific representation combined with a softmax classifier
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Endnote
1A negative pair indicates a pair of different vessel

images, whereas a positive pair corresponds to a pair of
vessel images belonging to a unique vessel.
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