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Abstract

Multi-modal sensory data plays an important role in many computer vision and robotics tasks. One popular
multi-modal pair is cameras and laser scanners. To overlay and jointly use the data from both modalities, it is necessary
to calibrate the sensors, i.e., to obtain the spatial relation between the sensors.
Computing such a calibration is challenging as both sensors provide quite different data: cameras yield color or
brightness information, laser scanners yield 3-D points. However, several laser scanners additionally provide
reflectances, which turn out to make calibration to a camera well feasible. To this end, we first estimate a rough
alignment of the coordinate systems of both modalities. Then, we use the laser scanner reflectances to compute a
virtual image of the scene. Stereo calibration on the virtual image and the camera image are then used to compute a
refined, high-accuracy calibration.
It is encouraging that the accuracies in our experiments are comparable to camera-camera stereo setups and
outperform another of other target-based calibration approach. This shows that the proposed algorithm reliably
integrates the point cloud with the intensity image. As an example application, we use the calibration results to
obtain ground-truth distance images for range cameras. Furthermore, we utilize this data to investigate the accuracy
of the Microsoft Kinect V2 time-of-flight and the Intel RealSense R200 structured light camera.
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1 Introduction
Finding the spatial relation between a laser scanner and
a 2-D or 2.5-D camera is crucial for sensor data fusion.
Knowing this relation enables a multitude of applications,
for example coloring the point cloud, the generation of
textured meshes, or the creation of high accuracy ground
truth for range cameras. The method proposed in this
work has been specifically designed for generating refer-
ence distances for range camera evaluation. Nonetheless,
the approach is not limited to this application and can
also be used to calibrate a common 2-D camera to a laser
scanner.
Range cameras find widespread use, for example in

the field of robotics [1], in space [2, 3], automation in
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logistics [4] or in augmented reality devices like the
Google Tango phones. The major problemwith these sen-
sors is their limited accuracy. This gives rise to thorough
camera evaluations with respect to accuracy and other
individual camera characteristics that influence the range
measurements.
Several studies that investigate the accuracies and error

characteristics of range cameras have been presented in
the past. Rauscher et al. [5] analyze range cameras with
respect to their applicability to robotics. Yang et al. pre-
sented a detailed study on the Kinect V2 [6]. Fuersattel
et al. evaluated multiple time-of-flight cameras with
respect to different error sources [7]. Wasenmüller and
Stricker compare the structured light Kinect V1 camera to
the time-of-flight-based Kinect V2 camera [8].
Quantitative evaluation of range cameras requires

scenes with ground truth distance measurements. Nair
et al. state three methods to acquire such ground truth [9]:
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• Computed from a calibration pattern and known
camera intrinsic parameters

• Computed from a calibration pattern as seen from a
second high-resolution camera with known intrinsic
parameters and known spatial relation to the
evaluated camera.

• Measured with an additional, highly accurate 3-D
sensor (e.g., a laser scanner) with known spatial
relation to the evaluated camera.

The first two approaches have limited information value
as they typically provide reference distances only for pla-
nar regions. Moreover, the accuracy of the ground truth
quickly degrades as the distance between camera and
calibration pattern increases.
A laser scanner mitigates both issues. Laser scan-

ners typically provide high-accuracy point clouds of a
scene for larger operating ranges than camera-based solu-
tions. Also, this distance information can be obtained
for arbitrary, not necessarily planar, surfaces. However,
to leverage laser scanner point clouds for range camera
evaluation, it is necessary to calibrate the laser scanner to
the camera.
In this paper we propose a method for solving this task.

Starting from a scene that shows multiple calibration pat-
terns, e.g., checkerboards, we show how stereo calibration
methods can be used to obtain the rotation and transla-
tion between the sensors.We aim at calculating the spatial
relation based on a single point cloud/camera image pair,
as acquiring densely sampled point clouds can take up to
multiple minutes.
First, a virtual image of the point cloud has to be gen-

erated. It is important that this image shows all calibra-
tion patterns without occlusions. Thus, we demonstrate
how the laser scanner’s unordered point cloud can be
transformed such that it is approximately aligned with
the coordinate system of the camera. From this trans-
formed point cloud, a virtual image is generated. In this
image, the pixel intensities are derived from the reflectiv-
ity data that is associated with the individual 3-D point
measurements.
The reflectivity data quantifies the amount of light that

is reflected from a point in the scene back to the laser
scanner. Therefore, the strong contrast of the calibration
patterns also results in strong variations of the reflectiv-
ity data. By detecting the calibration patterns in both the
virtual and the camera image, point correspondences for
the two sensors can be obtained with sub-pixel accuracy.
Finally, these corresponding points are used as input to
established stereo calibration algorithms to obtain the
spatial relation between both sensors. Note that it is
necessary that the scene is sampled densely, such that at
least one 3-D point measurement can be mapped to each
pixel of the virtual image. Dense point clouds are required

for example calculating accurate meshes of the scene,
or like in our application, for generating ground-truth
distance measurements for range cameras. In this work,
we exploit the high sampling density to achieve even more
accurate calibration results than current state-of-the-art
methods.
The proposed method is evaluated with multiple data

sets from four different range cameras. We show both
qualitatively and quantitatively that the presented method
aligns the coordinate systems accurately and, further-
more, considerably outperforms the baseline method. In
image domain, misalignments of less than 0.2 pixels are
achieved. For corresponding 3-D coordinates in the scene,
the mean error is as small as 1.3 mm.
The contributions of this work consist of two parts.

1. We present an automatic method for calibrating a
laser scanner to a camera. This method enables the
user to estimate the spatial relation between the two
sensors with a single shot of a scene, which contains
only a small number of calibration patterns. The
applicability of the proposed method is shown for
four different camera-laser scanner setups.

2. We use the calibration technique to present accuracy
evaluations for different range camera technologies:
the Microsoft Kinect V2 time of flight camera and
Intel RealSense R200 structured light cameras.

In Section 2 we present related work. Detailed informa-
tion on the proposed algorithm can be found in Section 3.
The evaluation of the performance of the presented
approach and the range camera evaluation results are pre-
sented in Section 4. Section 5 summarizes and concludes
this work.

2 Related work
Several approaches exist for calibration of laser scanners
to cameras. Oftentimes, these methods are categorized by
the type of laser scanner they operate on, namely methods
for line scanners and methods for 2.5-D laser scanners.
For calibration of a 2-D laser line scanner to a camera,

Zhang et al. [10] proposed a method that makes use of
checkerboards for aligning the coordinate systems of both
modalities. The method requires multiple acquisitions
from different positions to establish sufficiently many
constraints for nonlinear optimization. More recently,
Kassir et al. [11] propose an automatic toolbox that builds
on top of the well-known Camera Calibration Toolbox
for Matlab. The toolbox is extended by detection algo-
rithms for both checkerboards in the camera images and
lines in the laser scanner data. In an iterative process, the
spatial relation is optimized such that the detected lines
match the planes of the calibration pattern. Zhou [12] pre-
sented a numerically more stable approach that also uses
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plane-line correspondences to constrain the estimation.
This method also requires fewer plane-line pairs than the
method by Zhang et al. [10].
Line laser scanners obtain range information only

for a single scanline. In the context of range camera
evaluation, this information is not sufficient. Instead,
dense 2.5-D point clouds are preferable. For example,
Unnikirshnan et al. [13] published an interactive Mat-
lab toolbox to calculate the spatial relation between a
camera and a 2.5-D dense point cloud. The authors rec-
ommend using at least 15 to 20 images. In each of the
images, the calibration pattern region has to be delim-
ited manually by drawing a polygon that encloses the area.
In contrast, we find the planar segments of the calibration
pattern automatically.With multiple patterns in the scene,
an accurate calibration from a single shot is possible. The
method proposed by Geiger et al. [14] obtains the spatial
relation based on a single shot of a scene that shows mul-
tiple checkerboard patterns. Based on the checkerboards
and planar segments in the scene, an initialization for a
subsequent iterative closest point-based refinement is cal-
culated. In contrast to their work, we incorporate the laser
scanner amplitudes to reduce the impact of inaccuracies
of the plane detection.
Ha et al. [15] propose a new, specifically constructed

calibration pattern with a triangular hole to reduce the
number of calibration images. While other methods typ-
ically require at least three different poses of calibra-
tion patterns, this method requires only two. Hoang
et al. [16] also use a calibration pattern with a triangu-
lar hole. Their pattern is used to obtain 3-D/2-D corre-
spondences for solving the perspective-n-point problem.
Gong et al. [17] propose to use as a calibration tar-
get three planes that form a trihedral. Based on at least
two shots on such scenes, the relative transformation
between the two sensor coordinate systems is estimated
via nonlinear optimization. Although the method does
not require special calibration targets, it still requires the
user to define the planar region in the camera image.
Our method requires three patterns, but these are
off-the-shelf patterns without particular manufacturing
requirements.
Moghadam et al. [18] estimate the spatial relation from

line segments that can be detected both in the point
cloud and in the camera image. Taylor and Nieto [19]
find the spatial relation by maximizing the mutual infor-
mation between the camera image and a virtual image,
which is colored according to the direction of the point
cloud’s normals. The work presented in [20] extends this
method by a more robust normal estimation algorithm.
However, both methods share the same drawbacks: the
usage of particle swarm optimization requires (a) the
initial knowledge of the range of the extrinsic param-
eters and (b) a computationally expensive rendering

of a virtual image for each particle in each iteration.
In contrast, we propose to use scene reflectivity to gener-
ate virtual views, which enables the use of highly accurate
calibration targets. Pandey et al. [21] also do not require
a calibration target. The authors propose a calibration
via minimizing the mutual information between the cam-
era pixels and the laser scanner reflectivity information.
This approach requires multiple views in order to obtain
a smooth cost function that can be optimized robustly.
Levinson and Thrun proposed a framework that mon-
itors the accuracy of a calibrated camera-laser scan-
ner setup while being in use [22]. If a miss-calibration
is observed, the extrinsic parameters are corrected by
finding the transformation which maximizes the over-
lap between edges in the image and in the point cloud.
This approach requires multiple frames and varied scene
geometry such that sufficient corresponding edges can be
found and a smooth cost function can be obtained. Scott
et al. [23] presented an approach for the calibration of a
laser scanner and cameras setup that also exploits reflec-
tivity information. The method is suited for setups that
move through an environment, e.g., in an autonomous
driving scenario. The authors relax the constraint that
field of views at a single point in time must overlap.
Instead, the authors assume that some overlap will occur
at some later point in time due to motion of the rigid
sensor setup. The abovementioned methods are partic-
ularly useful if no calibration pattern is present, e.g.,
outside a lab environment. However, the disadvantage of
these approaches is the reduced accuracy compared to
controlled lab setups.

3 Laser scanner to camera calibration
The basic concept of the proposed method is that we use
stereo calibration on the camera intensities and the laser
scanner reflectivities. Thus, the large reflectivity differ-
ences of checkerboards allow to compute rotation and
translation between the coordinate systems of both sen-
sors. Classic stereo calibration expects two input images.
The first input image is the intensity image from the range
camera. The second input image, from the laser scanner,
needs to be computed: the laser scanner measures an
unordered 2.5-D point cloud that has to be rendered to a
virtual image. In order to perform the rendering, a view-
ing direction onto the point cloud has to be defined. Good
viewing directions avoid occlusions, and yield a balanced,
unencumbered picture of the checkerboards in the scene.
Figure 1 shows a negative example, i.e., a virtual image
computed from a bad viewing direction. Here, only two
of the checkerboard patterns can be detected completely.
The corners of the left checkerboard cannot be found
automatically due to the pose of the pattern. Additionally,
this pattern occludes some parts of the big pattern in
its background. Such occlusions can make calibration
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a b

c d
Fig. 1 Examples from a Kinect V2 / laser scanner setup. a Laser scanner data, visualized in a point cloud viewer. b Amplitude image of the Kinect V2
for reference. c, d Virtual reflectance and distance images of the point cloud as seen from the camera position

much more difficult or even cause complete failure. We
mitigate this problem by computing a virtual image that
shows the calibration patterns from an angle similar to
the observing camera. It is likely that there is consid-
erable overlap between such computed virtual image
and the camera image. Thus, we seek a transformation
that approximately aligns the camera and laser scanner
coordinate systems.
In the next subsections, we present the full calibration

algorithm in three steps, i.e.,

1. Finding the plane segments of the calibration
patterns in the unordered point cloud

2. Calculation of an initial alignment for the two
coordinate systems

3. Virtual image generation and estimation of a spatial
relation via stereo calibration

3.1 Finding the calibration patterns in the point cloud
We assume that planes within certain size boundaries
stem from calibration patterns. We first search such
planes in the unordered point cloud obtained from the
laser scanner. The algorithm uses the idea that a plane is
characterized by a set of co-located points with surface

normals pointing towards the same direction. We define
neighborhoods for individual points and normal-based
region growing.
In organized point clouds, the term neighborhood is

often defined as the 4-connected or 8-connected neigh-
borhood of a (x, y) coordinate of a 2-D array. This asso-
ciation is not available with unorganized point clouds. In
this work, we define the neighborhood of a point pi as its
No closest points in a L2 sense. These neighbors can be
efficiently looked up by organizing the point cloud in a
suitable data structure, for example an Octree. The nor-
mal ni for a point pi can be approximated by fitting a plane
to the point and its No neighbors. This can be done effi-
ciently by calculating the eigenvalue decomposition of the
covariance matrix of these points [24].
Laser scanner data exhibits a relatively low noise level,

and computing ni from multiple points further reduces
noise in the estimated normals. Yet, inspection of the
normals still exhibits some unwanted variations. There-
fore, we apply a modified version of a bilateral smoothing
filter for organized point clouds [25]. The filter can be
rewritten such that it operates on neighborhoods in
unorganized point clouds. The smoothed 3-D point p′

i is
given by
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p′
i =

⎛
⎝pi +

No∑
j=0

wijpj

⎞
⎠

/ ⎛
⎝1 +

No∑
j=0

wij

⎞
⎠ , (1)

where wij = e
(
α‖pi−pj‖2

)
e(β‖ni−nj‖1) , (2)

and pj denotes the jth neighbor of pi. The same smooth-
ing can also be applied to each normal ni. The influence
of the distance between points and the difference between
normals is controlled with the parameters α and β .
The computed normals are used to segment planar seg-

ments in the point cloud. The algorithm begins with a
random seed point to define a new planar segment. The
seed point consists of a point coordinate and its associ-
ated normal. We perform breadth-first region growing on
points with similar normals. In other words, all points in
the neighborhood of the segment that have a similar nor-
mal are iteratively added to the current segment. Every
time a new point has been added to a segment, its nor-
mal is updated to be the average normal of all supporting
points. The similarity of two normals is determined by
thresholding on their angular difference. In our experi-
ments, a conservative threshold of 10° has proven to work
well. Segmentation stops if all points have been assigned
to a segment label. The segmentation is similar to a pre-
vious method for approximate plane segmentation for
organized point clouds [25].
With all points assigned to a planar segment, we select

those segments that may represent calibration patterns.
Assuming that the dimensions of the calibration patterns
are known, it suffices to threshold on the sizes of the
minimum oriented bounding boxes of all segments.

3.2 Estimation of the initial spatial relation
The initial transformation approximately aligns the coor-
dinate system of the laser scanner and the camera. The
initialization is calculated from the candidate planes and
the planes derived from the checkerboard patterns visible
in the camera image.
First, the checkerboard patterns have to be detected as

accurately as possible in the camera image. In this work
we use the detector proposed in [26]. With the known
dimensions of the patterns and the intrinsic parameters of
the camera, the 3-D coordinates of the calibration features
(e.g., checkerboard corners) can be calculated. Correspon-
dences between planes in the laser scanner and detected
patterns in the camera image can be directly established
if the calibration patterns can be uniquely identified by
their size, and if the number of plane candidates matches
the number of calibration patterns. Otherwise, these cor-
respondences have to be estimated. The naive solution
is to evaluate all possible permutations K for planes and
patterns and to choose the permutation that minimizes
some errormetric. IfNc calibration patterns are used, then

Nc plane candidates are drawn from all found plane can-
didates. The centroids of the plane segments m(p) and
the calibration patterns m(c) are used as candidate corre-
spondences to estimate a transformationR. The optimum
transformationR∗ is the one that minimizes the following
error metric

R∗
i = argmin

K

Nc∑
i

∥∥∥∥R
(
m(c)

i

)
− m(p)

i

∥∥∥∥ . (3)

The quality of a permutation is measured as the
sum of the distances between the transformed centroids
R

(
m(c)

i

)
and the centroids of the respective planar seg-

ments m(p)
i . Under the assumption that calibration pat-

terns and planes have been accurately detected, then the
minimum of the error metric corresponds to the best ini-
tialization. Note that other metrics could be employed
here as well, e.g., metrics based on normal directions or
combinations of normal directions and centroids. How-
ever, we found the metric in Eq. (3) to be sufficient, since
the initialization requires only a rough estimate of the
spatial relation. In our experiments, the number of per-
mutations K to search through was always low, since most
plane candidates are already filtered out using the sizes of
the calibration patterns.
The calculation above imposes mild constraints on the

positions and orientations of the calibration patterns.
These constraints are identical to the requirements for a
robust stereo calibration and typically not difficult to sat-
isfy: to obtain the most accurate results, the checkerboard
poses must constrain all six degrees of freedom of the
rigid body transformation. In practice, this means that the
checkerboards need to point into different directions (see,
e.g., Fig. 1b) and should cover as much area of the field of
view as possible.

3.3 Virtual view generation and refinement
transformation via stereo calibration

The initial, approximate alignment of the point cloud with
the camera image can be used to perform stereo calibra-
tion. To this end, a virtual image is computed from the
point cloud. Virtual image and camera image together are
then used to obtain a second transformation that refines
the initial relation between the sensors.
Brightness differences in the virtual image are cre-

ated from reflectivity information at each point from the
laser scanner. Strong reflectivity variations within the cal-
ibration pattern result in strong contrasts in the virtual
image. This is particularly useful at the transition between
black and white quads of the checkerboard pattern for
calibration.
For generating the virtual view, a set of intrinsic param-

eters for the virtual camera is required. These parameters
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have to be defined such that the calibration patterns can
be detected reliably. In this work, �(p) will be used to
denote the projection from a point p in 3-D space onto
a point (u, v) image plane, with � containing the pin-
hole camera parameters as well as potential lens distortion
parameters.
If the camera itself has a reasonable resolution, then

their intrinsic parameters can also be used for the virtual
camera. Otherwise, these parameters need to be selected
manually. It is possible to distinguish two cases: first, if the
camera resolution is very low, for example with time-of-
flight cameras, then a higher image resolution should be
chosen. In contrast, if the image resolution of the camera
is very high (e.g., > 1280 × 1024), the point cloud might
not be dense enough to provide good amplitude values for
each pixel. In the latter case, the resolution needs to be
adjusted to a smaller value.
The simplest method to obtain the intensity informa-

tion for each pixel is to project all points of the point
cloud onto the image plane. First, the intensities C(p)

of all points which are projected onto a single pixel
coordinate (u, v) have to be obtained. To this end, we
define a function γ (u, v,p), which indicates whether a
point p is projected onto a particular (u, v) coordinate
or not.

γ (u, v,p) =
⎧⎨
⎩
true if �(p) �→ (u′, v′),

|u′ − u| ≤ 0.5 ∧ |v′ − v| ≤ 0.5
false otherwise

LetN =
{
pj | γ (u, v,pj)

}
be the set of all points that are

projected on pixel (u, v). As a simple heuristic to mitigate
issues from occlusions, we limit the size of N to a maxi-
mum of 8. If more than 8 points map onto (u, v), we select
only the 8 points that are closest to the camera. Then, the
intensityV (u, v) of the virtual image is given as the average
of Nc laser scanner intensity values C(pj),

V (u, v) = 1
Nc

∑
pj∈N

C(pj) . (4)

Instead of the naive approach, more sophisticated
methods can be used to obtain intensity values, for
example ray casting. However, this is beyond the scope of
this work.
Next, the calibration patterns are detected in the vir-

tual image and matched to the keypoints from the camera
image. These correspondences can be used to compute
a second rigid body transformation R∗

r , which we call
refinement transformation. R∗

r is obtained by minimiz-
ing the reprojection error between corresponding key-
points as given in Eq. (6). The cost function measures the

2-D distance between a keypoint xi and its corresponding
transformed and projected keypoint x̂i in the other image.

R∗
r = argmin

Rr

∑
i

∥∥∥∥xi − �Rr�̂
−1(x̂i)

∥∥∥∥ (5)

+
∥∥∥∥x̂i − �̂R−1

r �−1(xi)
∥∥∥∥ , (6)

where �̂ denotes the projection from the point cloud to
the virtual image. The inverse projections �−1 and �̂−1

are obtained by solving the perspective-n-point prob-
lem. Note that there are also direct solutions to calculate
rotations and translations for 3-D point correspondences,
for example the method by Horn [27]. By choosing the
nonlinear optimization approach, we can jointly optimize
both forR∗

r and the transformation which relates the cal-
ibration pattern coordinate system and the camera coor-
dinate system, thereby achieving a more accurate refine-
ment transformation. By concatenating R∗

i and R∗
r , the

final spatial transformation Rf is obtained. Knowing the
final rigid body transformation, it is possible to directly
transform any point cloud into the coordinate system of
the camera. This transformed point cloud allows the cal-
culation of virtual amplitude images or virtual distance
images that are accurately aligned with the camera image.

4 Evaluation
A particular benefit of a laser scanner-to-camera calibra-
tion is the ability to create ground truth for evaluating
range sensors. To this end, we use two classes of range sen-
sors as cameras: time-of-flight (ToF) sensors (Microsoft
Kinect V2 and PMDCamBoard Pico Flexx) and structured
light sensors (Intel RealSense R200 and the Orbbec Astra).
The laser scanner is a Leica ScanStation P20 scanner.
In case of the ToF cameras, the amplitude channel is

used to capture the calibration scene. For calibrating the
structured light cameras to the laser scanner, we use the
infrared channels with the pattern emitter either being
covered or disabled. Of the RealSense R200’s two infrared
channels, we choose the left one as it is aligned with the
distance map.
Whenever possible, we used the factory calibration of

the range cameras as provided by the individual camera
SDKs. For all cameras, except the Astra, these parame-
ters could be obtained. The latter was calibrated with 60
checkerboard images using the method by Zhang [28].
In this evaluation we use the approach proposed by

Geiger et al. [14] as baseline. It consists of an initialization
and a refinement stage, similarly as the proposed method.
Initialization is performed in a similar way as the proposed
method and results in a set of rotations and translations,
one of which approximately aligns the two coordinate sys-
tems. Different from our method, Geiger et al. propose to
use the iterative closest point algorithm (ICP) for refining
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the initial alignment. In order to create common basis for
comparison, we replace the proposed stereo calibration-
based refinement with the ICP-based refinement. To this
end, we generate 3-D coordinates from the camera intrin-
sics and the checkerboard coordinates as suggested by the
authors.
The setup of our experiments and the used data is

described in Section 4.1. In Section 4.2, we present qual-
itative results for the proposed method. In Section 4.3,
we present quantitative results on the evaluation scenes.
Section 4.4 provides additional insights on the impact of
the proposed refinement step. An evaluation of the mea-
surement accuracy of a ToF (Kinect V2) and a structured
light camera (RealSense R200) conclude the evaluation in
Section 4.5.

4.1 Experimental setup and data
We captured five different scenes with the same spatial
relation: a calibration scene that shows the four patterns,
an evaluation scene with rearranged patterns, and three
general scenes with different objects. The individual point
clouds contain ≈ 6.2 million points, sampled from a
volume of approximately 230 × 150 × 95 cm.
In the calibration and evaluation scene, four checker-

board patterns with different dimensions and a different
number of corners are captured:

• 6 × 5 inner corners, 66.67 mm corner spacing
• 6 × 7 inner corners, 50 mm corner spacing
• 6 × 9 inner corners, 44 mm corner spacing
• 8 × 7 inner corners, 50 mm corner spacing

All patterns are printed on rigid boards to avoid errors
from bending calibration patterns. Captured images are
averaged for 100 frames to reduce the impact of measure-
ment noise. The spatial relation between the laser scanner
and the cameras is calculated on the first scene.
In all amplitude, intensity, and virtual images shown in

the evaluation, the pixel values are normalized to values
between 0 and 1 for better comparison.

4.2 Qualitative evaluation results
We illustrate the performance of the proposed method
by comparing virtual reflectance images with observed
images. The calibrations between the individual cameras
and the point cloud are calculated on the first scene. Then,
calibration data is used to generate virtual images of the
evaluation scene for each camera. For comparison, each
camera has been calibrated with the proposed method
and the baseline method to the point cloud.
Figure 2 shows the difference between the observed

camera images and the virtual images for the baseline
method (denoted as “ICP”) and for the proposed method
(denoted as “Proposed”). Wrong spatial relations show

as additional edges in the scene, whereas all edges in
the scene coincide for an accurate transformation. It is
important to emphasize that the magnitude of the pixel
differences is not caused by misalignments, but by the
internal conversion of the incoming light to intensities of
the different sensors.
When calculating the spatial parameters with the base-

line method, small offsets between corresponding edges
can be observed (see Fig. 2a, e, and g). In contrast, for the
proposed method, the virtual and observed images accu-
rately coincide for all cameras. A visual comparison of the
calibration results of the CamBoard Pico Flexx is difficult
due to the low sensor resolution and the low reflectance of
the black checkerboard patches. In these areas, the Cam-
Board Pico Flexx does not provide amplitude values, as
only a small portion of the emitted light is reflected back
to the sensor.

4.3 Quantitative results
The reprojection error is a common choice to eval-
uate the quality of a stereo calibration result. Thus,
we compare the checkerboard positions in the cam-
era image and in the virtual image. In this experiment,
the system is calibrated on the first scene. Hereafter,
the reprojection errors are calculated on the evaluation
scene. As the virtual image is generated from the per-
spective of the camera, we can directly compare the 2-D
positions of the keypoints which are returned by the
checkerboard detection algorithm.
For assessing the impact of the misalignments in 3-D,

we reproject the keypoints based on the intrinsic param-
eters and known pattern dimensions. Similarly, as in the
2-D case, we can directly compute the differences between
corresponding 3-D world coordinates.
The results of this comparison are shown in Table 1.

With the proposed method, we observe mean errors in
corresponding 3-D coordinates between ≈ 1 to 3 mm,
depending on the used camera. When relying only on
3-D information, like in the ICP variant, the measured
errors are at least three times as large as for the proposed
approach.
The calibration errors of the proposed method are

within the expectation of typical stereo calibrations. The
authors of the pattern detector report 3-D measurement
errors between 1 and 7 mm, depending on the sensor
resolution [26].

4.4 Influence of the refinement transformation
In this section we demonstrate the importance of the
refinement via stereo calibration. During initialization,
the centroids of the planar segments that represent the
checkerboard patterns in the laser scanner’s point cloud
are used to calculate the initial transformations. If these
centroids are not perfectly accurate, then the resulting
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Fig. 2 Difference of observed image and the corresponding virtual images for the two evaluated approaches. The difference images (a), (c), (e) and
(g) have been calculated with virtual images generated with calibrations from the ICP-based approach. The figures (b), (d), (f) and (h) show overlays
which have been calculated with calibrations from the proposed method. For the baseline method, misalignments can be observed in examples
(a), (e) and (f). In contrast, no misalignments identified if the proposed method is used for calibration

initial transformation has only limited accuracy. The cen-
troid is given by the mean coordinate of all points that
belong to the segment, and thus sensitive to segmentation
errors. If the segmentation for example contains points of
the supporting surface of the calibration pattern, or if the

segmentation is not completely homogeneous, then the
centroid will be off-center.
In Fig. 3a, double edges at the checkerboard quads

indicate that the two images are not accurately aligned.
Figure 3b shows the difference image of the Kinect’s

Table 1 Mean calibration error and standard deviation for four cameras in 2-D and 3-D for two calibration approaches

Camera ICP 2-D (px) Proposed 2-D (px) ICP 3-D (cm) Proposed 3-D (cm)

Kinect V2 1.172 ± 0.492 0.176 ± 0.084 1.113 ± 0.108 0.267 ± 0.064

CamBoard Pico Flexx 2.309 ± 0.509 0.305 ± 0.125 0.930 ± 0.124 0.319 ± 0.134

Astra 0.491 ± 0.232 0.418 ± 0.119 1.135 ± 0.444 0.126 ± 0.038

RealSense R200 1.124 ± 0.653 0.252 ± 0.121 0.880 ± 0.285 0.160 ± 0.109
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a b

Fig. 3 Impact of refinement for the calibration scene and the Kinect V2. a Difference between the virtual reflectance image and the observed image.
Inaccuracies in the initialization cause edges to appear twice. b Difference image between the final reflectance image and the amplitude image of
the camera: all edges accurately coincide

amplitude image and the virtual reflectance image after
refinement. In the refined result, no double edges can be
observed. Instead, all checkerboard quads as well as the
borders of the pattern boards are accurately aligned.

4.5 Range camera evaluation
For this experiment, we use the calibration results
to generate ground truth distance data for the three
general scenes. Depending on the focus of the
study, the scenes have to be designed differently.
The primary interest of the following experiment is
to evaluate the absolute measurement accuracy of
the range cameras with a certain volume of interest.
Furthermore, we set up the scene such that several char-
acteristics of the different range camera technologies
can be illustrated. In this evaluation, we present as an
example evaluation results for the Kinect V2 and the
RealSense R200 camera, i.e, representatives of both
classes of range cameras.
The setup consists of several objects which are posi-

tioned in front of the sensors: boxes, cylinders, etc. Each
scene is captured first with the laser scanner then with the
two cameras, to exclude mutual interference. Then, the
individual range camera measurements are compared to
the reference distance images which have been generated
from laser scanner data. For visualizing the measurement
errors, we subtract the observed distance image from the
virtual distance image.
In Fig. 4 we demonstrate some of the characteristic

properties of each sensor type on one of the general
scenes. To investigate the dependency of measurement
error and distance, we combine the result of the three gen-
eral scenes and plot the errors for a region of interest as
shown in Fig. 5. The mean accuracy is calculated for 1-cm
bins and plotted in black. Gray dots represent individual
measurements.

4.5.1 Kinect V2
The ToF sensor provides dense distance measurements
for all pixels which are properly illuminated (see Fig. 4b).
In Fig. 4c, the measurement errors for all pixels which lie
in the common field of view of the laser scanner and the
range camera are illustrated. Two characteristic errors can
be observed in this figure: an amplitude-dependent error
and multi-path effects [7]. The amplitude-dependent
error can be observed best in the lower right cor-
ner of the image in the area of the calibration target.
Even though the surface of this target is flat, a clear change
of distances can be observed between high- and low-
reflectivity regions. Multi-path can be observed best in
the central image region. In this area, the emitted light
can easily hit multiple regions one after another before
being reflected back to the camera. Especially for pixels
that belong to the flat surface of the box, the acute view-
ing angle fosters a comparably large impact of multi-path
effects.
The results shown in Fig. 5 support this insight. Most

of the objects in the scene can be found within the range
from 1.5 to 1.85 m. The objects in the first row of the
scene can be expected to suffer only marginally from
multi-path effects as there are only very few small sur-
faces which could reflect the light such that it will return
to the camera. In contrast, the central region of the scene
contains more objects, and thus more surfaces which can
create non-direct paths back to the camera. This can also
be observed in Fig. 4g, where the absolute mean error
changes drastically for distances that contain the cen-
ter of the scene (see highlighted areas in Fig. 5a–c). For
larger distances, which contain the well-reflecting back-
ground, themeasurement accuracy increases again. For all
areas which are not affected by multi-path, and which are
well illuminated, the measurement error matches earlier
reported values [7].
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a

b c

d e

Fig. 4 Per-pixel accuracy evaluation for one of the general scenes. Distances and measurement errors are given in meters and encoded as colors.
a Imaged scene. b Kinect V2 distance image c depth error for Kinect V2. d RealSense R200 distance image. e depth error for RealSense R200

4.5.2 RealSense R200
In this section, characteristic errors of the RealSense R200
structured light camera are investigated. Stereo block
matching and the subsequent internal processing causes
the speckle-like pattern that can be observed best in the
planar background region of Fig. 4e. Block matching also
causes fringes at sharp borders, e.g., at the borders of the
spheres. Similarly as the time-of-flight camera, this sen-
sor also relies on the requirement that the emitted light is
reflected back to the cameras. If the imaged surface does
not reflect the light in the spectrum of the emitter, then
no or only inaccurate measurements are possible. These
effects can be observed in the lower left sphere (inaccurate

measurements) and at the lower right calibration target. A
characteristic of structured-light cameras is that the base-
line between projector and observing camera introduces
occluded image regions, seen best at the disc on the right
side of the image.
Another error characteristic of stereo structured light

cameras is the fact that the theoretical depth resolution
decreases with the distance between camera and mea-
sured point [29]. This observation can also be made in
Fig. 4h. While the accuracy for near regions is approxi-
mately 1 cm, it decreases steadily as the distance increases.
For background pixels, the average accuracy drops to
≈ 3.5 cm (highlighted in blue).
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a b c

d

g h

e f

Fig. 5Measurement error with respect to distance. a–c Evaluated ROI of the three scenes from the perspective of the Kinect V2 camera.
d–f Respective ROIs for the RealSense R200 sensor. g, hMean measurement error with respect to distance. Gray dots depict individual
measurements. The black line represents the mean measurement error within 1 cm. The red line marks the zero-level to help reading the plots. The
light blue overlays highlight interesting distance ranges which are discussed in the evaluation. (Kinect V2: 1.5 to 1.85 m, RealSense R200: 1.8 to 2.3 m)

5 Conclusion
We presented a novel method for finding the spatial rela-
tion between a camera and laser scanner based on stereo
calibration. The algorithm enables the user to calibrate the
laser scanner to a camera with high accuracy using only a
single shot of a calibration scene.
In our evaluation, we compare the proposedmethod to a

similar, calibration pattern-based approach and show that
our method achieves notably more accurate calibration

results. In terms of the reprojection error, our method
outperforms the baseline at least by a factor of three.
Furthermore, we show that the calibration results com-
pare very well to standard stereo calibration algorithms,
although the sensory data to our method is very heteroge-
neous. For corresponding keypoints of the observed and
virtual images, the misalignments account for less than
0.2 pixels. In world coordinates, this results in errors of
less than 1.3 mm.
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The applicability of the method is demonstrated in the
context of range camera evaluation. Here, we use the
method to investigate the measurement errors of a time-
of-flight and a structured light camera: the Microsoft
Kinect V2 and the Intel RealSense R200. In this evalu-
ation, we can showcase several error sources which are
characteristic to the different range sensing technologies.
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