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Abstract

This paper describes a methodology for diabetic retinopathy detection from eye fundus images using a
generalization of the bag-of-visual-words (BoVW) method. We formulate the BoVW as two neural networks that can
be trained jointly. Unlike the BoVW, our model is able to learn how to perform feature extraction, feature encoding,
and classification guided by the classification error. The model achieves 0.97 area under the curve (AUC) on the DR2
dataset while the standard BoVW approach achieves 0.94 AUC. Also, it performs at the same level of the
state-of-the-art on the Messidor dataset with 0.90 AUC.
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1 Introduction
Diabetic retinopathy (DR) is a complication of diabetes
mellitus, wherein micro aneurysms start to form in the
tiny vessels of the retina. In later stages of the disease,
some retinal blood vessels may become blocked causing
vision loss. Patients often do not have symptoms of the
disease in its early stages which makes early diagnosis
hard.
DR is the leading cause of blindness and visual loss in

the working age population and the secondmost common
cause in the USA [1]. Early detection of diabetic retinopa-
thy is paramount for the success of the treatment, as it can
prevent up to 98% of severe vision loss [2].
One way of performing the diagnosis of DR is by visu-

ally inspecting eye fundus images in order to detect retinal
lesions. Examples of eye fundus images taken from the
Messidor [3] dataset can be seen in Fig. 1. Although there
are several grades of DR, we are only interested in the task
of detecting the disease.
This work poses the task of discriminating between nor-

mal and pathological eye fundus images as a Multiple
Instance Learning (MIL) problem. In the MIL task, each
training example (called bag) is a set of feature vectors
(called instances). Each bag has an associated label, but the
labels of the instances are unknown.
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The Standard Multiple Instance Learning assumption
states that an example is positive if and only if one or
more of its instances are positive [4]. Both normal and
pathological eye fundus images contain several anatom-
ical structures in common such as the macula, optical
disk, and blood vessels. Nonetheless, only the pathological
examples contain microaneurysms or any other lesion.
We pose the widely used bag-of-visual-words (BoVW)

[5] method as a neural network, which allows it to refine
the feature extraction and clustering functions by back-
propagating the classification error.
We evaluated our method on the DR1 [6], DR2 [6], and

Messidor [3] datasets. Our method obtained the new best
results on the DR2 dataset and comparable results to the
state-of-the-art on the Messidor dataset. To the knowl-
edge of the authors, this is the first time that the DR1
dataset is used for the detection of DR.
Our contributions are as follows: a generalization of

the BoVW method that outperforms the classical BoVW
with a smaller number of visual words; we do not use
lesion level information; and our method is more general
than the classical approaches without compromising the
results.

2 Related work
Most of the published work relies heavily on classical
image processing methods and focuses on detecting indi-
vidual DR lesions such as microaneurysms [7], drusen,
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Fig. 1 Examples of eye fundus images of an healthy retina (a) and a retina with diabetic retinopathy (b). a Normal retina. b Pathological retina

exudates, and cotton-wool spots [8]. These methods typ-
ically follow a similar pipeline: image preprocessing, can-
didate extraction, and candidate classification. As each
algorithm deals with a single lesion, a DR referral system
has to combine the outputs of different methods to make
a decision.
Amores [4] divided Multiple Instance Learning algo-

rithms in three paradigms: Instance-Space (IS), Bag-Space
(BS), and Embedded-Space (ES). The author compared
these paradigms and found that the BS and ES paradigms
have consistently better results than the IS one.
The IS paradigm assumes that each instance has dis-

criminative power and the classifier is trained on the
instance level. Then, for a new bag, the instance-level
scores are aggregated to provide a final score. The BS
paradigm assumes that the relevant information lies at the
bag level. Since a bag is a non-vectorial entity, as it consists
of a set of points, we need to define a distance function
capable of comparing two sets of points. The ES paradigm
maps each bag into a single feature vector that provides
relevant statistics for the whole bag. The BoVW method
falls into this category.
Pires et al. [6] applied the BoVW in the context of lesion

classification in retinal images. The authors tried differ-
ent feature extraction schemes and different coding and
pooling functions. They found that in most cases, the best
results were obtained by extracting and describing sparse
features with Speeded Up Robust Features (SURF) [9],
using semi-soft assignment as the coding function and the
max function for the pooling operation.
Yan et al. [10] proposed a two-stage MIL method for

computer tomography body part recognition. The authors
divide the input image into patches and train a Convo-
lutional Neural Network (CNN) on each patch on an IS
fashion to find the discriminative patches. The second
stage uses the learned discriminative patches as ground
truth and adds a new class to the final layer to rep-
resent the non-discriminative patches. The image label
corresponds to the label of the most discriminative patch.
On the other hand, Hou et al. [11] used a CNN on

patches of gigapixel Whole Slide Tissue Images to dif-
ferentiate between cancer subtypes. The authors start by
dividing the image into patches and classify each patch

into discriminative/non-discriminative using a CNN and
expectation maximization. They then use the patch-level
predictions to create an image level histogram that is
used to train a logistic regression classifier. This is an ES
method.

3 Methods
3.1 Bag-of-visual-words
The BoVW follows a specific pipeline: (i) extract local fea-
tures from the images, (ii) learn a visual dictionary, (iii)
create mid-level representations of the images using the
visual dictionary, and (iv) learn a classifier using the mid-
level representations. The visual dictionary consists of a
set of M centers cm ∈ RD called visual words and is
typically learned with K-means.
Following the terminology of Precioso and Cord [12],

the extraction of local features from an image results in an
unordered set of local descriptors named bag-of-features
(BoF) X = xi, i ∈ 1, . . . ,N , where xi ∈ RD is a descriptor
of a local interest point and N is the number of interest
points detected in the image. As the number of interest
points extracted varies from image to image (N will be a
function of the image), the image does not have a fixed size
feature vector, and therefore, it is not possible to directly
apply a classifier.
A two-step pipeline is applied to each BoF in order to

obtain its mid-level representation: coding and pooling.
The coding step is a function f : RD → RM that maps

Feature 
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Encoding Pooling Classification

U D

Fig. 2 A model that generalizes the BoVW. It is able to learn how to
extract features, encode them, and classify the image
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Table 1 Architecture of the network U when SURF is used on the
DR1 and DR2 datasets

Layer Output size

Input (dropout 30%) 128

FC-ReLU (dropout 50%) 500

FC-Softmax 100

a descriptor from the feature space into a representation
based on the visual dictionary.
The pooling step aggregates the projections of the input

features onto the dictionary to get a single representation.
It can be represented by a function g : {wi}i∈1,...,N → RM

as g({wi}) = z. The max-pooling function performs well
with the MIL assumption: the presence of a single micro-
aneurysm is enough to classify the image as pathological:

g ({wi}) = max
i∈{1,...,N}wi,k , ∀k, (1)

where wi is the output of f (xi) and k is in the range [ 0,M].
The histogram z is then used as the feature vector of the
image and used to train a classifier.

3.2 Convolutional bag-of-visual-words
The main problem with the BoVW approach is that the
feature extraction, feature encoding, and classification are
three separate problems. In order to counteract this prob-
lem, the size of the dictionary is increased to better divide
the feature space, in some cases reaching hundreds of
thousands of visual words. We created a neural network
that is able to perform the same function as the BoVW but
is able to learn jointly the feature extraction, coding, and
classification functions.
Two networks are defined (Fig. 2): (i) a coding net-

work U(x; θu) parameterized by θu that learns to extract
features and cluster input instances together and (ii) a
classification network D(x; θd) parameterized by θd that
discriminates between normal and pathological mid-level
representations.
The input of the model is convolved with U , result-

ing in a vector of latent variables, analogous to visual
words. These latent variables, ideally, represent the differ-
ent anatomical structures of the retina:

U(xi) = p (wi|x) (2)

Table 2 Architecture of the network U when SURF is used on the
Messidor dataset

Layer Output size

Input (dropout 30%) 128

FC-ReLU (dropout 50%) 150

FC-Softmax 25

Table 3 Architecture of the network U

Layer Filter size, stride Output size

Input - 64 × 64 × 1

Conv-ReLU 5×5, 1 60 × 60 × 16

Max-pool 2×2, 2 30 × 30 × 16

Conv-ReLU 3×3, 1 28 × 28 × 16

Max-pool 2×2, 2 14 × 14 × 16

Conv-ReLU 3×3, 1 12 × 12 × 16

Max-pool 2×2, 2 6 × 6 × 16

Conv-ReLU 3×3, 1 4 × 4 × 16

Max-pool 2×2, 2 2 × 2 × 16

Flatten - 64

FC-Softmax - 32

The classification network D receives as input a sum-
mary of the whole image and performs the classification.
For instance, if the max-pooling function is used as the
pooling function g,D decides based on which latent vari-
ables are present in the image and which are not. For
DR detection, if one latent variable becomes active when
a microaneurysm is present, D classifies the image as
pathologic.

z = g ({wi}) (3)
D(z) = p(y|z) (4)

The output of the model is, then, computed by
D

(
g({U(xi)})

) ∀ xi ∈ X .
The function g is required to be differentiable (or

almost everywhere differentiable), in order to train the
two networks jointly. To train the network with back
propagation, ∂g(U(xi))

∂U(xi) must be defined in order to update
θu:

∂L
∂θu

= ∂L
∂z

·
N∑

i

(
∂g (U(xi))

∂U(xi)
· ∂U(xi)

∂θu

)
, (5)

where L is the loss function. Popular pooling functions
like sum pooling and average pooling are differentiable
and max pooling is almost everywhere differentiable and,
as such, can be used with this model.
Similarly to BoVW, the model can receive bags of SURF

as input, or any other numerical BoF X . To do that, the

Table 4 The number of normal and pathological images in each
dataset

Dataset Normal Pathological

DR1 595 482

DR2 337 98

Messidor 546 654
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Table 5 Comparison of DR detection on the DR1 dataset

Method AUC

Sparse SURF 93% ± 1%

Dense CNN 91%

feature extraction part of the network U is omitted and
the BoF is given to the encoding part of U .
The advantage of this model over IS methods is that

D is able to find relationships between the inputs. If the
input instances are not discriminative, as when the output
is the result of an XOR between two latent variables, this
model is able to learn the classification function while IS
methods cannot.

3.3 Procedure
The first step consists of extracting features from the
image. We tried two strategies: (i) dense—extract patches
from the image on a grid using different sizes and scales
and (ii) sparse—extract SURF features from the image,
since it has been empirically shown to have better results
than other feature extraction methods on DR detection
[6]. The OpenCV [13] implementation was used with
default parameters.
After the extraction of local interest points, we pro-

ceed to describe them. Again, two strategies were used: (i)
SURF—extracting the 128 dimensional extended feature
vector and (ii) CNN—used only with dense features.
For the case when SURF was used on the DR1 and

DR2 datasets, we used the network U as depicted in
Table 1, and in Messidor, the used architecture is shown
in Table 2. The network U in Table 3 was used for the
CNN strategy. In both cases, D was a single fully con-
nected layer. We used dropout [14], batch-norm [15], and
dataset augmentation to regularize the network.

4 Evaluation
4.1 Datasets
We tested our model on three different datasets: (i)
DR1[6]—grayscale 640 × 480 images. Images may be
Normal or have one or more lesions. (ii) DR2[6]—
grayscale 867 × 575 images. These images are divided by
referral: images that indicate DR and normal images. (iii)
Messidor [3]—RGB images labeled with the retinopathy

Table 6 Comparison of DR detection on the DR2 dataset

Method AUC

Pires et al. (2014) [6] 94%

Dense SURF 95% ± 1%

Sparse SURF 97%± 1%

Dense CNN 97%

The italic entries were showing the best results

Table 7 Comparison of DR detection on the Messidor dataset

Method AUC

Antal and Hajdu (2012) [19] 88%

Roychowdhury et al. (2014) [18] 90%

Quellec et al. (2015) [17] 89%

Sparse SURF 90%

The italic entries were showing the best results

grade, with 0 being normal and 1 to 3 being the different
severity grades. Images have three different resolutions of
1440 × 960, 2240 × 1488, and 2304 × 1536.
We were only interested in distinguishing between nor-

mal and pathological images, so all images from DR1
with lesions and all images from Messidor with grade ≥1
were considered pathological. The number of normal and
pathological images in each dataset is listed in Table 4.

4.2 Results
We followed the same evaluation procedure on the three
datasets: we held-out 20% of each dataset for testing, while
65% was used to train and 15% for validation. The values
for the hyper-parameters were found using random search
[16], choosing the values that had the best area under the
curve (AUC). The results are shown in Table 5 (DR1),
Table 6 (DR2), and Table 7 (Messidor).
Our method was able to achieve 93% AUC in the DR1

dataset extracting SURF features. We were expecting the
CNN to perform better, but it only achieved 91% AUC.
Pires et al. [6] used a BoVW with 1000 visual words

and achieved 94% AUC on the DR2 dataset, while our
method, with only 100 visual words, was able to achieve
97% (Table 6). Quellec et al. [17] also used a variation
of the BoVW, with a more complex encoding scheme,
achieving 89% AUC on the Messidor dataset, while ours
achieved 90% (Table 7).

Fig. 3 Results of the model on the DR2 dataset by varying the
number of visual words
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Fig. 4 Visual word that becomes active on vessel bifurcations. Appears both on normal (left) and pathological (right) images. Best viewed in color

Our method is also able to obtain comparable results to
Roychowdhurry et al.’s [18] method, that relies on feature
engineering.
We also tested the impact of the number of visual words

on the results of the model by training the network using
sparse SURF features on the DR2 dataset while varyingM
(Fig. 3). With 55 visual words, the model already achieves
96% AUC and then slowly increases to 97% AUC with 100
visual words.We did not see any improvements on the test
set AUC by using more than 100 visual words.
Since we used 100 visual words to train the Sparse

SURF model, it is easy to inspect what the model learnt.
The different visual words are still divided by their visual
appearance. We wanted to see if the model was indeed
capable of learning the different anatomical structures of
the retina.
By looking at the instances that become active at each

visual word, it was possible to confirm that the model
still divides the instances by their visual similarity. For
instance, there is one visual word that becomes active on
blood vessel intersections, as seen in Fig. 4, and another
on the macula, although, there are other visual words that

are not as interesting, such as one that becomes active on
points on the border of the image.
Nonetheless, there are some visual words that are only

active on pathological images. One of such visual words is
shown in Fig. 5 and becomes active on bright lesions.

5 Conclusions and future work
We presented a neural network architecture that gen-
eralizes the well-known BoVW model. It is capable of
using existing feature extraction methods or to extract
features from images using a CNN. We do not encode
any prior knowledge into the model, resulting in a very
general method, without sacrificing the performance. Our
method outperforms the BoVW and is comparable to the
state-of-the-art approaches.
Since our method is able to learn with fewer number

of visual words than the traditional BoVW approaches, it
should be more interpretable. In the future, we want to
evaluate the interpretability of the model.
We were expecting that using a CNN to extract fea-

tures from the images would perform better than using
SURF features, but in the case of the DR1 dataset, that

Fig. 5 Visual word that becomes active on bright lesions. Appears only on pathological images. Best viewed in color
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was not true. These results might be due to the increased
difficulty in optimizing the hyper-parameters with CNNs.
It remains as future work to perform further tests with
CNNs and evaluate the effects of the patch size on the
results.
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