
IPSJ Transactions on Computer
Vision and Applications

Masuzaki and Sugaya IPSJ Transactions on Computer Vision and
Applications  (2016) 8:6 
DOI 10.1186/s41074-016-0007-y

RESEARCH PAPER Open Access

Effective elliptic arc selection from
connected edge points
Tomonari Masuzaki* and Yasuyuki Sugaya

Abstract

Extracting edge points from an image and fitting ellipses to them is a fundamental technique for computer vision
applications. However, since the extracted edge points sometimes contain non-elliptic arcs such as line segments, it is
a very difficult to extract only elliptic arcs from them. In this paper, we propose a new method for extracting elliptic
arcs from a spatially connected point sequence. We first fit an ellipse to an input point sequence and segment the
sequence into partial arcs at the intersection points of the fitted ellipse. Next, we compute residuals of the fitted
ellipse for all input points and select elliptic arcs among the segmented arcs by checking the curvatures of the
residual graph. Then, we fit an ellipse to the selected arcs and repeat the above process until the selected arcs do not
change. By using simulated data and real images, we compare the performance of our method with existing methods
and show the efficiency of our proposed method.
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1 Introduction
A circular object in a scene is projected onto the image
plane as an ellipse, and we can compute its 3-D posi-
tions from that ellipse [5]. Therefore, detecting circles and
ellipses in images is the first step of many computer vision
applications including industrial robotic operations and
autonomous navigation. For this purpose, many methods
for extracting elliptic arcs from an image and for fitting an
ellipse to the extracted elliptic arcs are studied [6, 15, 20].
In order to detect ellipses in images, we usually extract

edge points from images and fit or estimate the ellipse
parameters from them.We classify ellipse detection prob-
lems into two stages. One stage is to estimate ellipse
parameters accurately for given points. The other is to
select elliptic arcs from the extracted edge points.
For the former problem, many methods have been pro-

posed. The simplest method for fitting an ellipse is least
squares (LS) which minimizes the sum of squares of the
ellipse equation. A more accurate method was proposed
by Taubin [17]. Moreover, hyper-LS [8, 9] and hyper-
renormalization [10] whose solution has no deviation up
to high-order noise terms are also proposed. Maximum
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likelihood (ML) is also a well-known method, which min-
imizes the reprojection error, i.e., the sum of the distances
from data points to the fitted ellipse [4]. Many ML-based
methods have been proposed [1, 7, 11, 13].
Ellipse-specific methods also have been proposed [3, 12,

16, 18, 19]. It is Fitzgibbon et al. [3] who first proposed a
method that only fits an ellipse.
The latter problem of ellipse detection is to select ellip-

tic arcs from the extracted edge points. Since all the above
methods do not consider the presence of non-elliptic arcs,
which we call “outliers” in this paper, in the input point
sequence, the accuracy of those solutions deteriorate if the
input point sequence includes outliers. So, it is an impor-
tant task to separate elliptic arcs from the input point
sequence.
Ad hoc and simple methods for detecting non-elliptic

arcs are line fitting and curvature-based methods. How-
ever, these methods may detect special targets, for exam-
ple, line-fitting methods detect only line segments, so
they cannot always remove all outliers. Random sam-
ple consensus (RANSAC) is a well-known framework for
dealing with outliers [2]. RANSAC has problems that it
needs a lot of iterations and does not work well if the
number of outliers are larger than that of inliers. Yu et al.
[20] detected an outlier point sequence from fitting resid-
uals and removed it from the input data. By iteratively
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applying the above procedure, they fitted an ellipse to the
remaining inliers. Shao et al. [14] segment an input point
sequence into some spatially connected arcs and detect
elliptic arcs by fitting ellipses to all the combinations of the
segmented arcs.
We propose a new method for extracting elliptic arcs

from a spatially connected point sequence. Assuming
that input data is a spatially connected sequence of edge
points, we segment it into partial arcs by considering the
ellipse fitting residuals and detect inliers by computing the
curvature of the residual graph of each of the segmented
arcs.
Our method has several advantages over existing meth-

ods. (1) The proposed method can automatically segment
an input point sequence at the intersections of the fit-
ted ellipse and select inlier elliptic arcs by repeating point
segmentation and ellipse fitting. (2) Our method involves
iterations, but the number of iterations is much less than
those of iterative methods like RANSAC and Yu’s method.
(3) Moreover, in contrast to Yu’s method, our method has
the possibility of fitting a more accurate ellipse because
inliers are selected from all the input data in each iteration
step, meaning that the number of data to fit an ellipse does
not decrease by iterations. (4) Our method also detect
outlier arcs which are smoothly connected to inlier arcs.
This type of outliers cannot detect by the curvature-based
method.

2 Ellipse fitting
Curves represented by a quadratic equations in x and y in
the form

Ax2 + 2Bxy + Cy2 + 2f0(Dx + Ey) + f 20 F = 0, (1)

are called “conics,” which include ellipses, parabolas,
hyperbolas, and their degeneracies such as two lines [5].
The condition that Eq. (1) represents an ellipse is

AC − B2 > 0. (2)

Our task is to compute the coefficients A, ..., F so that
the ellipse of Eq. (1) passes through the detected points
(xα , yα),α = 1, ...,N , as closely as possible (Fig. 1). In
Eq. (1), f0 is a constant that has the order of the image
size for stabilizing finite length numerical computation.1
For a point sequence (xα , yα), α = 1, ...,N , we define 6-D
vectors

ξα =(x2α , 2xαyα , y2α , 2f0xα , 2f0yα , f 20 )�,
θ =(A, B, C, D, E, F)�. (3)

The condition that (xα , yα) satisfies Eq. (1) is written as

(ξα , θ) = 0, (4)

where (a, b) denotes the inner product of vectors a and b.
Since vector θ has scale indeterminacy, we normalize it to
unit norm: ||θ || = 1.

Fig. 1 Fit an ellipse to given points

Since Eq. (4) is not exactly satisfied in the presence of
noise, we compute a θ such that (ξα , θ) ≈ 0, α = 1, ...,N .
For computing a θ that is close to its true value, we need to
consider the statistical properties of noise. The standard
model is to regard the noise in (xα , yα) as an independent
Gaussian random variable of mean 0 and standard devia-
tion σ . Then, the covariance matrix of the vector ξα has
the form σ 2V0[ ξα], where

V0[ ξα]= 4

⎛
⎜⎜⎜⎜⎜⎜⎝

x2α xαyα 0 f0xα 0 0
xαyα x2α + y2α xαyα f0yα f0xα 0
0 xαyα y2α 0 f0yα 0

f0xα f0yα 0 f 20 0 0
0 f0xα f0yα 0 f 20 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (5)

which we call the “normalized covariance matrix” [7].
We use the normalized covariance matrix to compute
residuals of ellipse fitting.

3 Fitzgibbon’s method
In order to segment an input point sequence at inter-
section points of a fitted ellipse, we fit an ellipse by
Fitzgibbon’s method. For fitting only an ellipse, Fitzgibbon
et al. [3] proposed to minimize the algebraic distance

JLS =
N∑

α=1
(ξα , θ)2, (6)

subject to AC − B2 = 1. This constraint is written as

(θ ,NFθ) = 1, NF ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 −2 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (7)
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The solution that minimizes Eq. (6) subject to this con-
straint is obtained by solving a generalized eigenvalue
problem

NFθ = μMLSθ , (8)

and computing the unit eigenvector θ for the largest
eigenvalue μ, where the matrixMLS is defined by

MLS = 1
N

N∑
α=1

ξαξ�
α . (9)

4 Proposedmethod
We assume that input data is spatially connected points
and that the fitted ellipse intersects the curve at multiple
points (Fig. 2a).We automatically segment the input curve
into partial arcs at these intersection points. We compute
the variation of the tangent angle to the graph of the fit-
ting residual, which we simply call “error curvature” in this
paper, and judge if each arc is an inlier or an outlier based
on this “error curvature.”
The principle of our inlier arc selection is nearly equiva-

lent to the curvature-basedmethod. However, ourmethod
is more efficient, because our method computes the cur-
vature of the residual graph at only one point where the
residual takes a maximum in each segmented arc.
In Fig. 2, the input point sequence is divided into five

partial arcs by the fitted ellipse. The residual value of the
arc PQ, which consists only of an elliptic arc, smoothly
changes around the peak value. On the other hand, we can
see that the residual graph has a peaky shape over the arcs
consisting of non-elliptic arcs.
Moreover, we can see that the arcs PP′ and QQ′, which

are connected to the elliptic arc PQ, are also elliptic arcs.
The points P′ and Q′ are the peak points of the partial
arcs adjacent to the elliptic arc PQ. Therefore, if we use

not only the detected inlier arc but also the adjacent arcs
like the arcs PP′ and QQ′ for ellipse fitting, we can effec-
tively fit a correct ellipse. The algorithm of our method is
summarized as follows:

1. Fit an ellipse to a point sequence by Fitzgibbon’s
method [3].

2. Compute the sign of the left-hand side of Eq. (4) for
all the points and segment the point sequence into
partial arcs at the points across which the computed
sign changes.

3. For each segmented arc, detect the point where the
residual value takes a maximum and compute its
error curvature φ at this point.

4. Go to step (a) if it is the first inlier selection, else go
to step (b).

(a) Select an inlier arc which has the smallest
value φ among those arcs whose arc lengths
are longer than a threshold2 and extend it to
each peak point of adjacent arcs. Then, we fit
an ellipse to the selected arc.

(b) Select the arcs whose error curvature φs are
smaller than a threshold φ̂3 and fit an ellipse
to them.

5. Repeat the procedures from step 2 to step 4 until the
number of inliers does not change.

As discussed before, if a selected arc is an elliptic arc, the
adjacent arcs are also elliptic arcs. Therefore, we can effec-
tively fit a correct ellipse if we use those arcs. However, if
we select a non-elliptic arc as an inlier and add adjacent
outlier arcs to fit an ellipse, we cannot fit a correct ellipse.
For this reason, in the first iteration of our algorithm,

we select among the arcs that are sufficiently long the one

Fig. 2 a An ellipse fitted to a point sequence which includes non-elliptic arcs. A black line is an input point sequence. b Fitting residual graph. The
horizontal axis shows the index of the points, which starts from the blue point to the red point shown in (a). The vertical axis shows the signed fitting
residual whose sign is computed by the left-hand side of Eq. (4)
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whose error curvature φ at its peak point is the smallest.
We regard it as a reliable inlier and extend it to the adja-
cent partial arcs. After the first iteration, we select all arcs
whose error curvature φs are smaller than a threshold φ̂.
We do not extend those arcs, because the adjacent arcs are
non-elliptic arcs if the selected inlier arcs approximately
belong to the correct ellipse.
In the following sections, we describe the details of our

method.

5 Segmentation of the point sequence
The left-hand side of Eq. (4) at the point pα has a different
sign outside and inside the ellipse θ . Using this fact, we can
segment the input point sequence {pα} into partial arcs
at those pα points which have different signs from their
neighboring points.
However, the value (ξα , θ) may not be exactly zero even

if the point pα lies on the fitted ellipse θ ; the points lying
on the fitted ellipse may irregularly change their signs, so
these pointsmay be segmented in very short arcs. To avoid
this, we regard those partial arcs whose fitting residual val-
ues are close to zero as elliptic arcs and judge that they
are inlier arcs without computing their curvatures.We call
such arcs “tangent arcs.”
For fitted ellipse θ , we first compute a fitting residual

eα of a point pα , α = 1, ...,N by Eq. (10), which is a first
approximation of the distance between the fitted ellipse
and the point pα . We also compute a sign of the residual
by the value of the left-hand side of Eq. (4).

eα =
√√√√ (

ξα , θ
)2(

θ ,V0[ ξα] θ
) . (10)

Next, we segment the input point sequence into partial
arcs at those pα points which have different signs from
their neighboring points. If the maximum residual in the
segmented arc is smaller than a threshold Emin4, we regard
the arc Rκ as a tangent arc.

6 Inlier arc selection
After segmenting the point sequence, we detect the point
α∗ where the fitting residual takes its maximum and
compute its error curvature at this point by using its
neighboring points β and γ (Fig. 3). If the computed cur-
vature is larger than a threshold, we regard this arc as
an outlier. Since the horizontal axis of the residual graph
Q̄α = (α, eα)� is an index of the input point sequence,
the computed error curvature depends on the scale of the
horizontal axis of the residual graph. For example, if two
point sequences have the same shape and different scales,
the curvatures of their sequences have different values.

Fig. 3 Error curvature φ of the peak point α∗ for a partial arc

Therefore, we normalize the scale of the horizontal axis of
the residual graph in the form

Qα =
(

λemaxα

N
, eα

)�
, (11)

where emax is the maximum value of all ellipse-fitting
residuals and λ is a constant for normalization.5 If emax
is extremely large, the normalization of Eq. (11) may not
work well. So, if emax is larger than a threshold Emax6, we
replacing the value emax with the threshold Emax in the
normalization computation.
In order to compute the error curvature, we need to

select neighboring points Qβ and Qγ . We first select
indices β and γ such that β = α∗−d and γ = α∗+d. Here,
d is a constant for determining the distance from the point
Qα∗ . If both of the points Qβ and Qγ are not included in
Rκ , we decrease d until either of them is included in Rκ .
If Qα∗ is located near the start or the end point of the arc
Rκ , we cannot select both of the neighboring points prop-
erly. In this case, we select at least one neighboring point
and compute its symmetric point to α∗. More details are
described in the following algorithm.
For M-segmented arcs Rκ(i, j) = {Qδ| δ = i, ..., j}, κ =

1, ...,M, we compute error curvatures for selecting inlier
arcs by the following algorithm.

1. Let α∗ be the index of the point whose residual takes
its maximum in the arc Rκ . Here, if a target arc is a
tangent arc, finish this procedure.

2. Select two points whose indices β and γ are such that

β = α∗ − d, γ = α∗ + d, d = (j − i)/r, (12)

where r7 is a constant for determining the distance
between the point α∗ and its neighboring points β

and γ . If both β and γ are out of Rκ , we update d to
d ← d − 1 until either of the two points are in the
arc Rκ .
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3. Compute two vectors x(1) and x(2) according to the
following three rules. Here, x(a)

b denotes the b-th
component of the vector x(a).

case a: Points Qβ and Qγ are both in the arc Rκ .

x(1) = Qα∗ − Qβ , x(2) = Qα∗ − Qγ . (13)

case b: Point Qβ is in the arc Rκ .

x(1) = Qα∗ − Qβ , x(2) =
(
−x(1)

1 , x(1)
2

)�
.

(14)

case c: Point Qγ is in the arc Rκ .

x(2) = Qα∗ − Qγ , x(1) =
(
−x(2)

1 , x(2)
2

)�
.

(15)

4. Compute the error curvature φ by

φ = π − cos−1
( (

x(1), x(2))
||x(1)||||x(2)||

)
. (16)

5. Regard the arc Rκ as an inlier arc if φ is smaller than
the threshold φ̂.

If it is the first iteration of an inlier selection, we extend
the selected inlier arc to each peak point of its adjacent
arcs. If the adjacent arc is a tangent arc, we check the next
adjacent arc and add the partial non-tangent arc as an
inlier.

7 Experiment
7.1 Inlier selection process
In order to confirm how our proposed method selected
inlier arcs, we checked the residual graph and the selected
inlier arcs and fitted the ellipse step by step for Fig. 4(1)-(a)
and Fig. 5(1)-(a).

Fig. 4 Inlier arc selection process of our method. a Used points to fit the ellipse in (b). The blue arc is the selected inlier arc. The green arcs are the
extended arcs from the selected inlier arc. b Fitted ellipse. c Signed fitting residual graph. The horizontal axis shows the index of the points. The
vertical axis shows the signed fitting residual. The blue and green arcs correspond to the arcs in (a) in the next row
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Fig. 5 Inlier arc selection process of our method. a Used points to fit the ellipse in (b). The blue arc is the selected inlier arc. The green arcs are the
extended arcs from the selected inlier arc. b Fitted ellipse. c Signed fitting residual graph. The horizontal axis shows the index of the points. The
vertical axis shows the signed fitting residual. The blue and green arcs correspond to the arcs in (a) in the next row

Figure 4(1)-(b) shows the fitted ellipse to all the input
data by Fitzgibbon’s method, and Fig. 4(1)-(c) is its signed
residual graph. The horizontal and vertical axis of the
graph indicate the index of the input points and a signed
fitting residual, respectively.
In our first inlier selection, the blue arc was selected

as an inlier arc and the green adjacent partial arcs were
extended as inliers. These arcs correspond to the blue and
green arcs in Fig. 4(2)-(a). In the second step, we fitted
an ellipse to the selected inlier arcs (Fig. 4(2)-(a)). The fit-
ted ellipse was shown in Fig. 4(2)-(b). As we can see, the
segmented arcs could be obviously separated to inlier arcs
(tangent arcs) and outlier arcs in Fig. 4(2)-(c). Our method
stopped in the third step because the number of inlier
points did not change and could fit a correct ellipse to all
the inlier points.

The input data of Fig. 5(1)-(a) consists of three different
elliptic arcs. Figure 5(1)-(b), (1)-(c) are the fitted ellipse
to all the input data and its signed residual graph, respec-
tively. This input point sequence is closed, so we consider
that the start and the end points are connected in the
residual graph. The blue arc is the selected inlier arc, and
the green adjacent arcs are extended arcs as inliers. These
arcs correspond to the blue and green arcs in Fig. 5(2)-(a).
By checking the selected inlier arcs in Fig. 5(2)-(a), we
can confirm that the selected arcs belong to one ellipse.
Figure 5(2)-(b) shows the fitted ellipse to them. Since the
selected arcs are short for the entire ellipse, the accuracy
of the fitted ellipse is not good. However, our method
selects the remaining elliptic arcs as inliers from the resid-
ual graph of Fig. 5(2)-(c) and fits a correct ellipse in the
third step.
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Fig. 6 Comparison of inlier selection. a, c, e, g The red curves are the fitted ellipses by our method, RANSAC, Yu’s method, and Shao’s method,
respectively. b, d, h The blue points are the selected inlier points by our method and RANSAC. f The blue points are used points to fit the resulting
ellipse by Yu’s method

From these results, we could confirm that our method
could select inlier arcs by repeating inlier selection based
on an error curvature and ellipse fitting.

7.2 Simulations
In order to confirm the effectiveness of the our proposed
method, we compared our method with RANSAC, Yu’s

Table 1 Inlier selection ratios/outlier selection ratios

Our method RANSAC Yu’s method Shao’s method

(1) 0.99/0.00 0.99/0.00 0.49/0.01 0.80/0.00

(2) 0.99/0.00 1.00/0.01 0.49/0.02 0.81/0.00

(3) 0.99/0.04 1.00/0.07 0.40/0.04 0.93/0.09

(4) 1.00/0.00 1.00/0.01 0.36/0.00 0.90/0.05

(5) 0.99/0.00 1.00/0.04 0.47/0.00 0.93/0.04

(6) 0.99/0.00 1.00/0.01 0.48/0.01 0.61/0.45

(7) 0.90/0.00 1.00/0.02 0.45/0.06 0.54/0.68

(8) 0.50/0.00 0.02/0.98 1.00/0.10 0.51/0.63

method, and Shao’s method for many simulation data.
Figure 6 shows some of the resulting ellipses. Figure 6(a),
(c), (e), (g) are the fitted ellipses by our method, RANSAC,
Yu’s method, and Shao’s method, respectively. The blue
points in Fig. 6(b), (d), (h) are the selected inlier points

Table 2 Comparison of computation time and number of
iterations: computation time in milliseconds (number of
iterations)

Our method RANSAC Yu’s method

(1) 4 (5) 41 (111) 80 (20)

(2) 8 (5) 61 (113) 148 (48)

(3) 12 (7) 79 (137) 208 (17)

(4) 4 (3) 49 (152) 288 (106)

(5) 8 (9) 42 (148) 600 (178)

(6) 4 (4) 59 (218) 216 (72)

(7) 8 (8) 68 (134) 48 (10)

(8) 4 (3) 64 (143) 424 (157)
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Fig. 7 Real-image experiment. a Extracted edge points. We selected red connected points as input data. b–e Resulting ellipses by our method,
RANSAC, Yu’s method, and Shao’s method, respectively

by our method, RANSAC, and Shao’s method, respec-
tively. The blue points in Fig. 6(f) are used points to fit the
resulting ellipse by Yu’s method.
Input data of Fig. 6(1), (2) have the same shape, but their

scales are different. For these data, all the methods fitted
a correct ellipse. In Fig. 6(3), two ellipses are tangent to
each other. Our proposed method, RANSAC, and Shao’s
method fitted an ellipse to the outer arc; however, Yu’s
method fitted an ellipse to the inner arc.
Figure 6(4) is an example which includes a line segment

as outlier points. All methods fitted an almost correct
ellipse. In Fig. 6(4), since Yu’s method fitted an ellipse to
a short arc, the accuracy of the resulting ellipse is not
good compared with the other methods. Figure 6(5) is an
example where an outlier arc is smoothly connected to
an inlier arc. For such input data, outlier detection based
on the curvature of a point sequence may not work well.
However, our method can correctly detect inlier and out-
lier arcs because it iteratively selects inlier arcs and fits
an ellipse. In Fig. 6(6), (7), input point sequences consist
of elliptic arcs and contours of other shapes. Our method
and RANSAC fitted a correct ellipse for each data. How-
ever, Yu’s method fitted a small ellipse to a short arc for
Fig. 6(7). Shao’s method detected many outlier points.
The inlier selection process of our method for Fig. 6(7) is
shown in Fig. 5. The input data of Fig 6(8) includes many
outlier points. Our method and Yu’s method output an
almost correct ellipse. Since the ratio of outliers was large,
RANSAC did not work well.
Table 1 shows the inlier selection ratios for the sim-

ulation data shown in Fig. 6. We manually counted the
number of inlier and outlier points in the input point
sequences and computed inlier and outlier selection

ratios. From these results, the capabilities of the inlier
arc selection of our method and RANSAC are almost the
same, but our method is superior to RANSAC if an input
point sequence includes many outlier points. In many
cases, Yu’s method detects small number of inliers. In
Figs. 6(3), (7), since Yu’s method detected elliptic arcs from
the different ellipse from that of the other methods, we
computed the inlier and outlier selection ratios for the
corresponding ellipse.
Table 2 shows the number of iterations and computa-

tion times for the three methods. We used Intel Core 2
Duo 3.00 GHz ×2 for the CPU with main memory 4 GB
and Ubuntu 12.04 for the OS. For RANSAC, we stopped if
the solution did not change after 50 consecutive iterations
and counted the mean total number of iterations over
10 trials. Since our method, RANSAC, and Yu’s method
were implemented in C++, but Shao’s method was imple-
mented in Matlab, we did not show the computation time
of Shao’s method. From this result, the number of itera-
tions and the computation time of our method is superior
to RANSAC and Yu’s method.

7.3 Real image experiment
Figure 7 shows real-image experiments. Figure 7(a) is the
extracted edge points by canny operator. We removed

Table 3 Inlier selection ratios/outlier selection ratios

Our method RANSAC Yu’s method Shao’s method

(1) 1.00/0.00 1.00/0.02 0.49/0.08 0.95/0.23

(2) 1.00/0.00 1.00/0.02 0.00/1.00 0.71/0.46

(3) 0.83/0.02 0.83/0.05 0.27/0.00 0.36/0.48
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Table 4 Comparison of computation time and number of
iterations: computation time in milliseconds (number of
iterations)

Our method RANSAC Yu’s method

(1) 3 (4) 70 (157) 228 (65)

(2) 1 (6) 16 (141) 3 (5)

(3) 4 (10) 49 (208) 56 (35)

successive edge points whose lengths were shorter than
50 pixels. The red points shown in Fig. 7(a) are manu-
ally selected edge points to fit an ellipse. Figures 7(b–e)
are extracted elliptic points and the fitted ellipses by
our method, RANSAC, Yu’s method, and Shao’s method,
respectively. The green points in Figs. 7(b–e) indi-
cate extracted the elliptic points, and the red ellipses
are the fitted ellipses to those extracted points. Our
method and RANSAC fitted almost correct ellipses. Yu’s
method fitted small ellipses for three data. We discuss

the reason that Yu’s method tends to fit a small ellipse
later. Shao’s method extracted many outlier points in
all data. This is because Shao’s method could not sepa-
rate inlier and outlier arcs in their point sequence seg-
mentation step since they only consider the distance
between adjacent points and the length of the segmented
arcs.
Table 3 shows the inlier selection ratios for real images

shown in Fig. 7. As we can see, our method and RANSAC
have almost the same performance of inlier selection.
However, our method has lower outlier selection ratio
than that of RANSAC. Table 4 shows the number of
iterations and computation times for Fig. 7.
Figure 8 shows the inlier selection process and corre-

sponding residual graphs for Fig. 7(1). From the residual
graph of the first ellipse fitting (Fig. 8(1)-(c)), our method
selected the top-left arc of an ellipse as an inlier (the blue
points in Fig. 8(2)-(a)) and extended the adjacent partial
arcs as inliers (the green points in Fig. 8(2)-(a)). Since a
correct ellipse was fitted to the selected arcs, our method

Fig. 8 Inlier arc selection process of our method. a Used points to fit the ellipse in (b). The blue arc is the selected inlier arc. The green arcs are the
extended arcs from the selected inlier arc. b Fitted ellipse. c Signed fitting residual graph. The horizontal axis shows the index of the points. The
vertical axis shows the signed fitting residual. The blue and green arcs correspond to the arcs in (a) in the next row
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Fig. 9 Inlier selection process of Yu’s method. a Used points to fit the ellipse in (b). The blue arc is the selected inlier arc. b Fitted ellipse

also selected a right-bottom arc of the correct ellipse and
converged in the next step.
We show the inlier selection process of Yu’s method in

Fig. 9. Figure 9(a) shows the remaining input points in
each iteration step. Yu’s method fits an ellipse to the input
points and removes the points whose fitted residuals are
larger than a threshold. So, the number of the input points
gradually decreases in the course of the ellipse-fitting step.

For this reason, the number of the remaining inlier points
becomes small and the resulting ellipse tends to be small
compared with the correct shape.
Figure 10 shows a result where our method selects

wrong point sequences. Our method cannot select point
sequences on an ellipse if the rate of input points on the
correct ellipse is low; hence, our method selects the wrong
point sequence at the first iteration.

Fig. 10Wrong selection of our method. a Extracted edge points. We selected the red connected points as the input data. b Fitted ellipse
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8 Concluding remarks
We proposed a new method for extracting elliptic arcs
from a spatially connected point sequence. Assuming that
input points are a spatially connected sequence of edge
points, we fit an ellipse to it and automatically segment
it into partial arcs at the intersection points of the fitted
ellipse. Then, we compute residuals of the fitted ellipse
for all input points and select elliptic arcs among the seg-
mented arcs by checking curvatures of the residual graph.
Our proposed method involves iterations, but the num-

ber of iterations is much less than those of RANSAC
and Yu’s method. Moreover, in contrast to Yu’s method,
our method has the possibility of fitting a more accurate
ellipse because inliers are selected from all the input data
in each iteration, meaning that the number of data to fit
an ellipse does not decrease by iterations.
By using simulated data and real images, we compared

the performance of ourmethodwith existingmethods and
showed that the performance of the inlier selection and
computation time of the proposed method were superior
to existing methods.

Endnotes
1We set f0 = 600.
2We set the threshold to be 5 % of the number of input

edge points.
3We set φ̂ = 80◦.
4We set Emin = 1.5.
5We set λ = 2.0.
6We set Emax to be (maximum image coordinates of the

input points)/3.
7We set r = 8.
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