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Abstract

Demand for automatic bird ecology investigation rises rapidly along with the widespread installation of wind energy
plants to estimate their adverse environmental effect. While significant advance in general image recognition has
been made by deep convolutional neural networks (CNNs), automatically recognizing birds at small scale together
with large background regions is still an open problem in computer vision. To tackle object detection at various scales,
we combine a deep detector with semantic segmentation methods; namely, we train a deep CNN detector, fully
convolutional networks (FCNs), and the variant of FCNs, and integrate their results by the support vector machines to
achieve high detection performance. Through experimental results on a bird image dataset, we show the
effectiveness of the method for scale-aware object detection.

1 Introduction
Wind turbines, one of the mainstream technologies for
cultivating renewable energy sources, are yet at the
same time considered serious threats to endangered bird
species [1]. Assessments of bird habitats around planned
sites are now required for the operators [2], whereas the
surveys rely on experts who conductmanual observations.
Automatic bird detection has hence drawn the attention
of industry, as it can reduce the cost and increase the
accuracy of investigations. It may also assist automatic
systems that decelerate the blades or sound an alarm at
the approach of birds.
When conducting bird surveillance with fixed-point

cameras, however, three issues occur related to resolution
and precision.
First, finding various scales of objects in large images

has been addressed as a difficult problem because of the
large differences in resolution. Second, images of surveil-
lance cameras have different characteristic from those in
general image recognition datasets, as objects captured by
wide-field-of-view cameras are often ambiguous due to
low resolution.
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Finally, the number of flying birds is irregular and there
are many scenes without any birds; thus, the detector is
required to reduce false detections of backgrounds as few
as possible for practical use.
To solve these problems, this paper presents a scale-

aware bird detection method with practically high pre-
cision. Following the idea of scene parsing (e.g., [3]),
we carefully select the combination of methods, each of
which are suited for objects at different scales; specifically,
a successor [4] of convolutional neural networks (CNNs)
[5] for small birds and two kinds of fully convolutional
networks (FCNs) for larger areas: the original FCNs [6]
and DeepLab [7]. FCN-basedmethods can recognize both
birds and backgrounds, while FCNs is more suited for
middle-size birds, and DeepLab is good at backgrounds.
Linear SVMs [8] are used to merge all the features for final
results. This paper is based on our previous work [9] but
improved so that features in the selected methods are all
based on deep learning.
The proposed method was experimentally evaluated

with a bird dataset especially constructed for ecological
investigations around wind farms, showing that com-
bining deep features from a detector and semantic seg-
mentation is effective for scale-aware object detection. It
achieved precision of 97 % in the bird detection task with
80 % recall rate.
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1.1 Related work
The advances in CNNs and the growing availability
of large-scale image datasets have brought outstand-
ing improvements in image recognition. In particular,
stronger learning models [10, 11] as well as effective
techniques for suppressing overfitting [12] and avoiding
the vanishing gradient problem [13] have significantly
improved the performance of CNNs.
Many new detectionmethods have been proposed along

with the advances in CNNs. In popular region-based CNN
methods (R-CNN) [14], a selective search [15] is first used
to identify potentially salient object regions (referred to as
region proposal), from which image features are extracted
by CNNs and classified by SVMs. We utilize ResNet [4],
one of themost successful networks in detection, while we
leave the region proposals as future work and use back-
ground subtraction for candidate region selection in this
study.
Significant progress has also been made in semantic

segmentation. There has been much debate about how
to parse both object categories (things) and background
categories (stuff ), each of which account for smaller and
larger parts of images. Various methods parse stuff and
things separately with region-based and detector-based
methods [3, 16].
Recently, a number of semantic segmentation methods

have been proposed that are based on FCNs [6, 7].
FCNs can obtain a coarse object label map from

the networks by combining the final prediction layer

with lower layers (skip layer) [17], where the context
and localization information are available for pixel-wise
labeling.
DeepLab use the hole algorithm [18], which convolutes

every other pixel. This approach can grasp the featuremap
more sparsely, which improves the ability to recognize
background.

2 Method
An overview of the proposed method is illustrated in
Fig. 1.
An input image is fed into three pipelines: (1) ResNet-

based CNNs as a detector for small birds after a back-
ground subtraction pre-processing, (2) FCNs as a method
that works as a detector but also as a semantic segmenta-
tion, and (3) DeepLab as a method that works as a seman-
tic segmentation. SVMs combine the class likelihoods and
scores derived from three pipelines. The outcomes of the
method are regions estimated to be birds.

2.1 CNNs for bird detection
We designed the CNN network model using ResNet [4],
which achieved the best results in the detection and clas-
sification of ILSVRC 2015. In ResNet, the input of a con-
volutional (conv) layer bypasses one or more layers and is
added to the outputs of the stacked layers. Compared with
previous net structures, ResNet learns so-called resid-
ual mappings, which make the learning easier even with
deeper structures.

Background

Input Output

FCN

DeepLab

CNN
Region Proposals 

Fig. 1 Overview of the proposed method
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Fig. 2 Example CNN architecture for small bird image detection

Figure 2 shows our network architecture based on
ResNet. We assume the sizes of the bird images ranges
from 10 to 200 pixels square; thus, we design the net-
works to take 64×64 images as inputs, doubled the size
of the original. Any size of detected bounding boxes will
be fitted to 64×64 and fed into the networks. Because of
this, one more block (the layers in yellow) is added before
the global average pooling to capture features effectively
with more hierarchies. Experimentally, the combination
of four blocks with n = 2 produces the best results; four
blocks with n = 3 produce similar results but require a
longer training time, fewer blocks have less accuracy even
with larger n, and more blocks cause overfitting even with
fewer n.
The rest of the networks follows [4]; here, we briefly

explain it for completeness. In every conv layer, the size
of the kernels is 3×3. The very first conv layer has 16 ker-
nels. Subsequently, there are four blocks, each of which
includes four (2n with n = 2) conv layers. The number of
kernels is 16, 32, 64, and 128 in each block, respectively.
When the dimensions increase by shortcut connections,
we use 1×1 convolutions with a stride of 2 to equalize the
input and output dimensions.
The first of four conv layers in the second and later

blocks includes a stride of two subsamples, and this
reduces the feature map size into half. Thus, the feature
map size (64×64) becomes 64, 32, 16, and 8, after the
process of each respective block. Finally, the ends of con-
volutions are connected using global average pooling, an
eight-way fully connected layer (fc 8) and softmax.We use
18 stacked weighted layers in total.

2.2 Combining class likelihoods by SVM
Wemodified FCNs and DeepLab to have four classes (i.e.,
bird, sky, forest, and wind turbine), and CNNs have eight
classes from its architecture, which we selected them as
follows: bird, blade, tower, anemometer, nacelle, hub, for-
est, and other. The implementation details of FCNs and
DeepLab are provided in the training section.
Each of the three pipelines yields a class-wise likelihood

or score: FCNs and DeepLab generate pixel-wise likeli-
hoods of classes, whereas CNNs generate a bounding box-
wise score of the likelihoods of classes. For SVM training,

we use only the pixels at the center of the bounding boxes
of candidate regions proposed by the inter-frame differ-
ence method in order to reduce calculation time, so that
it finishes within a reasonable amount of time. After the
first training, we use hard negative mining to reduce false
positives and to improve the overall performance. Specif-
ically, image regions of anemometers, night lights, the
lower parts of nacelles, in which the FCNs often pro-
duce false detections, are added for SVM training. The
pixels collected by the inter-frame difference have statis-
tical difference from the true pixel distribution. Because
of this, when CNNs are simply combined with seman-
tic segmentation-based methods, the whole framework
inclines to include many misdetections by CNNs; thus,
we add the background regions (sky, cloud, forest, and
wind turbine) inside the candidate bounding boxes in the
training.

3 Experimental results
We implemented CNNs, FCNs, and DeepLab, as well as
AdaBoost with Haar-like feature [19, 20] and SuperPars-
ing [21] as baselines. Then, we also trained several com-
binations of methods with our proposed framework and
evaluated their performance using a wide-area surveil-
lance dataset of wild birds [22], which contains a set

Table 1 F-measure of various methods

Method Precision Recall F-measure

HA 0.064 0.514 0.114

SP 1.000 0.366 0.536

FCN 0.684 0.519 0.590

FCN* 0.709 0.585 0.641

SP* 0.989 0.508 0.672

DL 1.000 0.557 0.716

CNN 0.598 0.902 0.719

FCN+DL 0.979 0.527 0.664

CNN+DL 0.799 0.628 0.703

CNN+FCN 0.924 0.798 0.856

CNN+FCN+DL 0.974 0.803 0.880

∗represents the method combined with SVMs
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of images with 2806×3744 pixels taken nearby a wind
turbine.

3.1 Data
For training of SuperParsing, FCNs, and DeepLab, we
picked out 82 images with different weather conditions
from the dataset and manually annotated them into four
classes: bird, wind turbine, sky, and forest, which are
all classes included in [22]. Finally, 77 images out of
82 were used and 5 were omitted since they were too
dark due to stormy weather. Except for SuperParsing,
the images were cropped to 500×500 pixels because the
original images were too large to process with FCNs
and DeepLab on our GPU memory. Cropping the entire
image randomly causes many frames only tagged with

the sky labels because more than a half of each image
was occupied by sky. With this in mind, we performed
cropping around the wind turbine area more intensively,
and obtained 70 frames from each image by shifting
a 500×500 pixel window through the area. Eventually,
we had 77×70 = 5390 frames for training FCNs and
DeepLab.
The training images for ResNet were acquired as candi-

date regions of moving objects with background subtrac-
tion from the entire dataset. The training images include
bird and non-bird regions, and we prepared a class of bird
and seven background classes.
These extra classes help training the networks because

they are frequently included in the candidate regions and
likely to cause misdetection. We categorized candidate

Fig. 3 Examples of detection results on the bird image dataset intended for ecological investigations. The green squaresmean TP. The red squares
mean FP
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regions into those eight classes manually. To train the
AdaBoost with Haar-like features, we used 15,705 bird
images and 18,688 non-bird images similarly collected to
train ResNet.

3.2 Training
3.2.1 FCNs
We used an FCN-8s model [6] pretrained on PASCAL-
Context [23], which contains 59 category (+ background)
segmentations. We then fine-tuned the model with the
images we prepared for training by using twofold cross
validation.

3.2.2 DeepLab
We used an DeepLab-MSc-LargeFOV model [7] pre-
trained on PASCAL VOC 2012 [24], which contains
20 category (+ background) segmentations. We modi-
fied the layer “fc8” from 21 outputs to 4: bird, forest,
sky, and wind turbine. As FCNs, we then fine-tuned the
model with the prepared images by using twofold cross
validation.

3.2.3 CNNs
We trained the ResNet-based model with eight-class
training images from scratch. In the same way as
[4], we used the method described in [25] for weight
initialization. In addition, we used batch normalization
[13] to reduce the internal covariate shift and accelerate
learning.

3.2.4 Haar+AdaBoost
AdaBoost with Haar-like features was trained follow-
ing [22]. Moving object regions were chosen by the
inter-frame difference. Then, the proposed regions were
marked with square bounding boxes and then trained the
detector with the bird and non-bird labels.

3.2.5 SVMs
We combined the class likelihoods and scores by using
pixel-wise SVM training and evaluated the performances
of the individual methods and their combinations.

3.3 Evaluation
We used 44 of the 77 labeled images that included more
birds (183 in total) than the others for the evaluation.
The performance of the method is ranked by using the
F-measure, i.e., the harmonicmean of precision and recall.
In the evaluation, we regarded detected bounding

boxes that had any overlap with ground-truth boxes
as correct detections and boxes with no overlap as
misdetection.
Similarly, in segmentation-based methods, we regarded

the outputs that had any region of overlap with the ground
truth as correct detections and those without overlap as
misdetections.

3.4 Results
We counted the true positives (TP) and false positives
(FP) of birds and calculated the precision, recall, and
F-measure. The results are summarized in Table 1.
AdaBoost with Haar-like features, SuperParsing, and

DeepLab are denoted as HA, SP, and DL, respectively. In
addition, SP* and FCN* represent the method combined
with SVMs. Usually, SP or FCNs output class label with
the highest likelihood, while SVMs consider all of the class
likelihoods for the output through training.
The upper part of Table 1 shows the results of individual

methods. SP and DL achieved the highest precision, while
CNNs achieved the best recall rate. FCNs achieved the
intermediate score between SP and CNNs. As expected,
CNNs highly outperform HA. DL performed similarly
to SP, but with much higher recall rate. SP* and FCN*
performed better than the ones without SVMs.
The lower part of Table 1 shows the results of com-

bination of methods, where most combinations exceed
each single method in terms of F-measure. Particularly,
combinations with DL have higher precision, suggesting
that DL can suppress false positives because it can rec-
ognize backgrounds well. The CNN+FCN result shows
FCNs also can recognize backgrounds. The CNN+DL did
not achieve a good score in spite of the combination
of the best detector and semantic segmentation, and it
shows that FCN is also necessary for better performance.
Figure 3 shows typical examples of detection results of
each method. More results can be found in the Additional
file 1.
To show the robustness of our method to the size of

the bird images, Table 2 summarizes the results accord-
ing to image size. The three image sizes, tiny (≤ 15×15),
small (≤ 45×45), and normal (> 45×45) are determined
according to [26].

Table 2 F-measure of various methods by size

Size Method Precision Recall F-measure

Tiny

FCN+DL 0.333 0.149 0.029

CNN+DL 0.432 0.239 0.308

CNN+FCN 0.808 0.627 0.706

CNN+FCN+DL 0.915 0.642 0.754

Small

FCN+DL 1.000 0.738 0.849

CNN+DL 0.844 0.813 0.828

CNN+FCN 0.972 0.863 0.914

CNN+FCN+DL 1.000 0.863 0.926

Normal

FCN+DL 1.000 0.890 0.941

CNN+DL 1.000 0.972 0.986

CNN+FCN 1.000 0.972 0.986

CNN+FCN+DL 1.000 0.972 0.986
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Fig. 4 Examples of bird images which could not be detected by the proposed method: a blurred shape, b overlap with the wind turbine, and c part
occlusions

In all image sizes, the proposed method produces the
best F-measure. DL is not suited for detecting tiny images
of birds, but CNN+FCN detects tiny bird images more
effectively. With DL, the performance is more improved
particularly in precision. This shows that FCN detects
more birds and DL is good at backgrounds.
Regarding the region proposals obtained by background

subtraction, the number of them was about 1000 to 2000
per an input image. As shown in the Fig. 2, almost all
the region proposals belong to the forest class. CNN
succeeded to filter most of them and contributed to
precision.
To clarify the limitation, we analyzed bird images which

could not be detected by the proposed method, as shown
in Fig. 4. Overlooked bird images were classified into
three patterns: blurred shape due to extremely low res-
olution, overlap with other objects (e.g., wind turbine),
and part occlusions (e.g., a bird is at the end of the
image).
Almost all images with ambiguous shape were either

only detected by CNN or not detected by any methods.
In detail, FCN and DeepLab showed too weak reaction to
very small birds to detect them. A few bird images over
the wind turbine were detected by FCN and DeepLab, but
when combined with CNN, they were missed because of
low likelihood of birds. There was only one bird image
whose parts were occluded; thus, it was hard to train such
pattern of bird images.

4 Conclusion
We combined different types of deep features from a
CNN-based detector and fully convolutional networks
by using support vector machines to achieve high per-
formance in detecting objects at various scale in large
images.
Experiments on a bird image dataset intended for eco-

logical investigations showed that our method detects
birds with high precision.
We showed combination of multiple deep convolutional

features are effective for scale-aware detection.
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