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Abstract

In deep learning, deep neural network (DNN) hyperparameters can severely affect network performance. Currently,
such hyperparameters are frequently optimized by several methods, such as Bayesian optimization and the
covariance matrix adaptation evolution strategy. However, it is difficult for non-experts to employ these methods. In
this paper, we adapted the simpler coordinate-search and Nelder-Mead methods to optimize hyperparameters.
Several hyperparameter optimization methods were compared by configuring DNNs for character recognition and
age/gender classification. Numerical results demonstrated that the Nelder-Mead method outperforms the other
methods and achieves state-of-the-art accuracy for age/gender classification.
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1 Introduction
The evolution of deep neural networks (DNNs) has dra-
matically improved the accuracy of character recognition
[1], object recognition [2, 3], and other tasks. However,
the their increasing complexity increases the number of
hyperparameters, which makes tuning of hyperparame-
ters an intractable task.
Traditionally, DNN hyperparameters are adjusted using

manual search, grid search, or random search [4]. How-
ever, search space expands exponentially relative to the
number of hyperparameters; thus, such naive methods no
longer work well. Therefore, more sophisticated hyperpa-
rameter optimization methods are required.
In deep learning, a hyperparameter optimization prob-

lem can be formulated as a stochastic black box opti-
mization problem to minimize a noisy black box objective
function f (x):

Minimize f (x) (x ∈ χ). (1)

Here, using all information available about the objective
function, we can obtain its value at point x with noise ε as
follows:

y = f (x) + ε, ε
iid∼ N

(
0, σ 2

noise
)
. (2)
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This means that no analytical properties of the objective
function, e.g., its derivatives, can be optimized. In addi-
tion, a loss function of the target DNN is typically chosen
as f (x), and its evaluation cost is so expensive that train-
ing and testing of the DNN is required. The search space
χ comprises combinations of multiple conditions such as
real numbers, integers, and categories.
Currently, Bayesian optimization [5] and the covariance

matrix adaptation evolution strategy (CMA-ES) [6] are
considered the most promising methods for DNN hyper-
parameter optimization, and their optimization ability has
been proven experimentally [7–10]. However, Bayesian
optimization has some hyperparameters that significantly
affect its optimization performance, e.g., choices of its
kernel and acquisition function. Moreover, maximizing a
non-convex acquisition function is required for each iter-
ation of the optimization process. On the other hand,
CMA-ES requires several populations and generations for
sufficient performance. Although such calculations can
be parallelized easily, significant computing resources are
required.
It is evident that simple classical manual search, grid

search, and random search remain common; thus, we
consider that most people are unwilling to adjust the
hyperparameters of a difficult optimization method or
implement the method and do not have sufficient com-
puting resources to optimize DNN hyperparameters.
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In this paper, we describe simple substitutional meth-
ods, i.e., the coordinate-search and Nelder-Mead meth-
ods, for hyperparameter optimization in deep learning.
To the best of our knowledge, no report has examined
the application of these methods to hyperparameter opti-
mization.
Our numerical results indicate that these methods are

more efficient than other well-known methods. In partic-
ular, the Nelder-Mead method is the most effective for
deep learning.

2 Related work
2.1 Random search
Random search is one of the simplest ways to optimize
DNN hyperparameters. This method iteratively generates
hyperparameter settings and evaluates the objective func-
tion. Random search has excellent parallelization and can
handle integer and categorical hyperparameters naturally.
Bergstra and Bengio demonstrated that random search
outperforms a manual search by a human expert and grid
search [4].

2.2 Bayesian optimization
Bayesian optimization is one of the most remarkable
hyperparameter optimization methods in recent years.
Its base concept was proposed in the 1970s; however, it
has been significantly improved since then due to the
attention paid to DNN hyperparameter optimization.
There are several variations of Bayesian optimization,

e.g., Gaussian process (GP)-based variation [11], Tree-
structured Parzen Estimator (TPE) [7], and Deep Net-
works for Global Optimization (DNGO) [12]. The most
standard one is the GP-based variation.
GP-based Bayesian optimization is shown in

Algorithm 1. In this method, we assume that an objective

Algorithm 1: Bayesian optimization [11]
for t = 1, 2, . . . do

Find xt by optimizing the acquisition function over
GP: xt = argmaxxu(x|D1:t−1);
Sample the objective function: yt = f (xt) + εt ;
Augment the data D1:t = {D1:t−1, (xt , yt)} and
update the GP;

end

function follows the GP specified by its mean function m
and kernel k:

f (x) ∼ GP(m(x), k(x, x′)). (3)

For simplicity, we assume m(x) = 0. Then, we must
consider the kernel k(x, x′). For the kernel, an automatic

relevance determination (ARD) squared exponential (SE)
kernel

KSE(x, x′) = θ0 exp
(

−1
2
r2(x, x′)

)
,

where r2(x, x′) =
D∑

d=1

(
xd − x′

d
)2

/θ2d ,
(4)

or ARDMatérn 5/2 kernel

KM52(x, x′)

=θ0

(

1+
√

5r2(x, x′)+ 5
3
r2(x, x′)

)

exp
(
−

√
5r2(x, x′)

)
,

(5)

is commonly used in Bayesian optimization [8]. Here, θ0,
θ1, . . . , and θD are the kernel’s hyperparameters.
Once k(x, x′) is determined, we can predict information

about a new sample point xt+1 from previous observations
D1:t = {x1:t , y1:t}:

P(yt+1|D1:t , xt+1)=N
(
μt(xt+1), σ 2

t (xt+1)+σ 2
noise

)
,(6)

μt(xt+1) = kT
[
K + σ 2

noiseI
]−1
y1:t , (7)

σ 2
t (xt+1) = k(xt+1, xt+1) − kT

[
K + σ 2

noiseI
]−1 k (8)

where
K =

⎡

⎢
⎣

k(x1, x1) · · · k(x1, xt)
...

. . .
...

k(xt , x1) · · · k(xt , xt)

⎤

⎥
⎦ + σ 2

noiseI,

k =[ k(xt+1, x1) k(xt+1, x2) · · · k(xt+1, xt)] .
The remaining problem is how to determine new sam-

ple points iteratively. To determine new candidates for
a sample, we generally employ an acquisition function.
Here, it is necessary to select an acquisition function
that achieves a good balance between exploration and
exploitation based on past observations. One well-known
acquisition function is expected improvement (EI):

EI(x)=
{
(μ(x)−f (x+))�(Z)+σ(x)�(Z)(σ (x)>0)
0 (σ (x)=0) (9)

where Z = μ(x) − f (x+)

σ (x)
, x+ = argmaxxi∈x1:t f (xi).

The point that maximizes the acquisition function
becomes a new sample point. Although maximizing the
non-convex acquisition function is difficult, the evalua-
tion cost of the function is considerably less than that of
the original objective function. Therefore, it is easier to
handle than the original problem.
Practically, Bayesian optimization is combined with ran-

dom search to collect initial observation data.
Bergstra et al. and Snoek et al. performed several com-

putational experiments. The results demonstrated that
Bayesian optimization outperforms manual search by a
human expert and random search [7, 8].
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2.3 Covariance matrix adaptation evolution strategy
While Bayesian optimization has been developed in the
machine learning community, CMA-ES has been devel-
oped in the optimization community. CMA-ES is a type
of evolutionary computation that demonstrates outstand-
ing performance in benchmarks as a state-of-the-art black
box optimization method [13].
The (μW, λ)-CMA-ES [6] is shown in Algorithm 2. It

conducts a weighted recombination from the μ best out
of λ individuals. The procedure is explained as follows.

Algorithm 2: The (μW, λ)-CMA-ES [6]
Initialize the mean 〈x〉(0)w , and the standard deviation
σ (0);
p(0)
c = 0; p(0)

σ = 0; C(0) = I;
for g = 0, 1, . . . do

Generate g + 1 generation λ individuals;
Select μ best individuals;
Update the evolution path and the covariance
matrix;
Update the evolution path and the step size;

end

(i) Initialize the mean 〈x〉(0)w and the standard deviation
σ (0) of individuals. Set the evolution path
p(0)
c = p(0)

σ = 0 and the covariance matrix C(0) = I.
(ii) Generate g + 1 generation individuals

x(g+1)
k (k = 1, . . . , λ):

x(g+1)
k = 〈x〉(g)w + σ (g)B(g)D(g)z(g+1)

k , (10)

where

〈x〉(g)w := 1
∑μ

i=1 wi

μ∑

i=1
wix

(g)
i:λ ,

B(g)D(g)
(
B(g)D(g)

)T = C(g),

z(g+1)
k ∼ N (0, I).

Here, w1, . . . ,wμ are weights, and i :λ denotes the i th
best individual.

(iii) Update the evolution path p(g)
c and the covariance

matrix C(g):

p(g+1)
c = (1−cc)p

(g)
c + cuccwB(g)D(g)〈z〉(g+1)

w , (11)

C(g+1) = (1−ccov)C(g)+ ccovp
(g+1)
c

(
p(g+1)
c

)T
, (12)

where

cuc := √
cc(2 − cc),

cw :=
∑μ

i=1 wi√∑μ
i=1 w

2
i

,

〈z〉(g+1)
w := 1

∑μ
i=1 wi

μ∑

i=1
wiz

(g+1)
i:λ .

Here, cc and ccov are hyperparameters.
(iv) Update the evolution path p(g)

σ and the step size σ (g):

p(g+1)
σ = (1 − cσ )p(g)

σ + cuσ cwB(g)〈z〉(g+1)
w , (13)

σ (g+1) = σ (g) exp
(

1
dσ

‖p(g+1)
σ − χ̂n‖

χ̂n

)

, (14)

where
cuσ := √

cσ (2 − cσ ),
χ̂n = E[ ‖N (0, I)‖] .

Here, cσ and dσ are hyperparameters.

Details about the hyperparameters used to update CMA-
ES parameters are provided in the literature [6].
Since evaluations of each individual for each generation

can be calculated simultaneously, CMA-ES can be paral-
lelized easily. Watanabe and Le Roux and Loshchilov et al.
demonstrated that CMA-ES outperforms manual search
by a human expert and Bayesian optimization in certain
cases [9, 10].

3 Coordinate-search and Nelder-Meadmethods
In the previous section, we introduced the random search,
Bayesian optimization, and CMA-ES methods. Note that
the achievements of these methods have already been
proven experimentally, and the results indicate that the
latter two methods are very promising and considered
superior to random search. However, both Bayesian
optimization and CMA-ES have many hyperparameters
related to their optimization performance. To set these
hyperparameters appropriately, it is necessary to have suf-
ficient knowledge about the given method. In addition,
Bayesian optimization must maximize its non-convex
acquisition function, and CMA-ES requires significant
computing resources to exploit its advantages. These fac-
tors make it difficult for non-experts to utilize these
methods.
In this section, we introduce two optimization meth-

ods, coordinate-search and Nelder-Mead, that are easy to
implement. These methods have fewer hyperparameters
to adjust and are practically usable with fewer computing
resources.

3.1 Mathematical concepts
Before introducing the methods, we define some required
mathematical concepts here.

Definition 1 The positive span of a set of vectors
[ v1 · · · vr]∈ R

n is the convex cone:

{v ∈ R
n : v = α1v1 + · · · + αrvr , αi ≥ 0, i = 1, . . . , r}.

Definition 2 A positive spanning set in R
n is a set of

vectors whose positive span is Rn.
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Definition 3 The set [v1 · · · vr]∈ R
n is considered posi-

tively dependent if one of the vectors is in the positive span
of the remaining vectors; otherwise, the set is considered
positively independent.

Definition 4 A positive basis for Rn is a positively inde-
pendent set whose positive span is Rn. A positive basis for
R
n that has n + 1 vectors is considered a minimal positive

basis and a positive basis that has 2n vectors is considered
a maximal positive basis (Fig. 1). Here, a maximal positive
basis is denoted as D⊕.

Definition 5 A simplex of dimension m is a con-
vex hull of an affinely independent set of points Y =
{y0, y1, . . . , ym}.

3.2 Coordinate-search method
The coordinate-searchmethod [14] (Algorithm 3, Fig. 2) is
one of the simplest direct searchmethods. It minimizes its
objective function iteratively using the maximal positive
basis D⊕ =[ I − I]=[ e1 · · · en − e1 · · · − en].

Algorithm 3: Coordinate-search method [14]
Initialization: Choose x0 and α0 > 0;
for k = 0, 1, . . . do

Poll step;
Parameter update;

end

This method performs a poll step iteratively to search
a better solution and updates parameters to adjust its
learning rate.

(i) Poll step: Order the poll set Pk = {xk + αkd :
d ∈ D⊕}. Evaluate f at the poll points in order. If a
poll point xk + αkdk that satisfies the condition
f (xk + αkdk) < f (xk) is found, then stop polling, set
xk+1 = xk + αkdk , and declare the iteration and poll
step successful.

(ii) Parameter update: If iteration k succeeds, then set
αk+1=αk (or αk+1=2αk). Otherwise, set αk+1= αk/2.

Fig. 1Maximal positive basis (D1) andminimal positive basis (D2) inR2

Fig. 2 Coordinate-search method

When the step size becomes sufficiently small, the search
is terminated. Note that the evaluation of functions in the
poll step can be parallelized.
This method deteriorates the performance for search

ranges with different scales; thus, in this study, we normal-
ize parameters to [0, 1] in our computational experiments.
In addition, we adopt the updating rule αk+1 = 2αk on
iteration success and order the vectors of the poll set
randomly for each iteration.

3.3 Nelder-Meadmethod
The Nelder-Mead method [14, 15] (Algorithm 4, Fig. 3)
is an optimization method that uses a simplex proposed
by Nelder and Mead. Gilles et al. applied this method
for the hyperparameter tuning problem in support vector
machine modeling. They demonstrated that the method
can find very good hyperparameter settings reliably for
support vectormachines [16]. Currently, the Nelder-Mead
method is not considered in DNN research; however,
it has a long history and many achievements in other
research areas [14]. Thus, we think it is worth considering

Algorithm 4: Nelder-Mead method [15]
Initialization: Choose an initial simplex of vertices
Y0 = {

y00, y
1
0, . . . , y

n
0
}
. Evaluate f at the points in Y0.

Choose constants:

0 < γ s < 1, −1 < δic < 0 < δoc < δr < δe.

for k = 0, 1, . . . do
Set Y = Yk ;
Order;
Reflect;
Expand;
Contract;
Shrink;

end
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Fig. 3 Nelder-Mead method

the Nelder-Mead method for DNN hyperparameter opti-
mization. In the study by Gilles et al., their SVM has only
two hyperparameters. On the other hand, DNNs often
have more than 10 times number of hyperparameters. So,
our task is more challenging.
The Nelder-Mead method minimizes the objective

function by repeating its evaluation at each vertex of the
simplex and by replacing points according to the following
procedure (Figs. 4 and 5).

(i) Order: Order the n + 1 vertices Y = {
y0, y1, . . . , yn

}

as follows:

f 0 = f (y0) ≤ f 1 = f (y1) ≤ · · · ≤ f n = f (yn).

(ii) Reflect: Reflect the worst vertex yn over the centroid
yc = ∑n−1

i=0 yi/n of the remaining n vertices:

yr = yc + δr(yc − yn).

Evaluate f r = f (yr). If f 0 ≤ f r < f n−1, then replace
yn with the reflected point yr and terminate iteration
k : Yk+1 = {

y0, y1, . . . , yn−1, yr
}
.

(iii) Expand: If f r < f 0, calculate:

ye = yc + δe(yc − yn)

and evaluate f e = f (ye). If f e ≤ f r , then replace yn
with the expansion point ye and terminate iteration
k : Yk+1 = {

y0, y1, . . . , yn−1, ye
}
. Otherwise, replace

Fig. 4 Reflection, expansion, outside contraction, and inside
contraction of a simplex by the Nelder-Mead method

Fig. 5 Shrinking a simplex by the Nelder-Mead method. y1 and y2 are
shrunk to ys1 and ys2, respectively

yn with the reflected point yr and terminate iteration
k : Yk+1 = {

y0, y1, . . . , yn−1, yr
}
.

(iv) Contract: If f r ≥ f n−1, then a contraction is
performed between the best of yr and yn.

(a) Outside contraction: If f r < f n, perform an
outside contraction:

yoc = yc + δoc(yc − yn)

and evaluate f oc = f (yoc). If f oc ≤ f r , then
replace yn with the outside contraction point
yock and terminate iteration k :
Yk+1 = {

y0, y1, . . . , yn−1, yoc
}
. Otherwise,

perform a shrink.
(b) Inside contraction: If f r ≥ f n, perform an

inside contraction:

yic = yc + δic(yc − yn)

and evaluate f ic = f (yic). If f ic < f n, then
replace yn with the inside contraction point
yic and terminate iteration k :
Yk+1 = {y0, y1, . . . , yn−1, yic}. Otherwise,
perform a shrink.

(v) Shrink: Evaluate f at the n points
y0 + γ s(yi − y0),where i = 1, . . . , n, replace
y1, . . . , yn with these points, and terminate iteration
k : Yk+1 = {y0 + γ s(yi − y0), i = 0, . . . , n}.

Here, γ s, δic, δoc, δr , and δe are constant hyperparame-
ters usually taking the following values:

γ s = 1
2
, δic = −1

2
, δoc = 1

2
, δr = 1 and δe = 2. (15)

Note that each step of an iteration, e.g., initialization and
shrink operations, can be parallelized easily.

4 Poor hyperparameter setting detection
DNNs are very sensitive to hyperparameter settings. As
a result, training can fail simply because some hyperpa-
rameters, e.g., the learning rate, are slightly inappropriate.
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When appropriate hyperparameter values are given, train-
ing loss is reduced in each iteration (Fig. 6, top graph);
otherwise, regardless of how many iterations have been
executed, training loss is not reduced (Fig. 6, bottom
graph).
The advantage of human experts is that they can detect

training failures and terminate them at an early stage.
Domhan et al. proposed a method that accelerates hyper-
parameter optimization methods by detecting and termi-
nating such training failures using learning curve predic-
tion [17]. In addition, Klein et al. proposed a specialized
Bayesian neural network to model DNN learning curves
[18, 19]. We apply Algorithm 5 to detect training failures
at an early stage.

Algorithm 5: Poor hyperparameter setting detection
Initialize n and t. Calculate initial loss l0;
After n learning iterations, calculate current loss ln;
if t < ln/l0 then

Terminate the training;
end

Fig. 6 Learning curve when training is successful (top) and
unsuccessful (bottom)

Note that this method does not optimize hyperparam-
eters directly, but accelerates a hyperparameter optimiza-
tion method. If a large number of training iterations with
poor hyperparameter settings appear in the optimization
process, this detection process improves the execution
time of the optimization method.
In our experiments, we apply this method to all hyper-

parameter optimization methods with n equaling 10% of
the training iterations and t equaling 0.8. These values are
chosen based on experience. As can be seen in Fig. 6, the
learning curve of poor hyperparameter settings is distinc-
tive and easy to detect; thus, there is no need to be too
careful to decide n and t.

5 Numerical results
We perform computational experiments to optimize real
and integer hyperparameters in combination with vari-
ous datasets, tasks, and convolutional neural networks
(CNNs) to compare the performance of the random
search, Bayesian optimization, CMA-ES, coordinate-
search, and Nelder-Mead methods.
The experimental settings for each method are given in

Table 1. We use the first 100 random search evaluations
to initialize the Bayesian optimization and coordinate-
search methods. The number of evaluations and initial-
ization parameters of CMA-ES and Bayesian optimization
are determined with reference to the literature [10]. We
implement CMA-ES usingDistributed Evolutionary Algo-
rithms in Python (DEAP) [20], which is an evolutionary
computation framework. In addition, for optimization
methods that cannot handle integer values directly, inte-
ger hyperparameters are handled as continuous values
and rounding is performed when evaluating the objective
function.

Table 1 Experimental setting for each method

Method Detail

Random search Perform 600 random evaluations.

Bayesian optimization Initialize the observation data with the first
100 evaluations of the random search, then
perform the optimization with exactly 500
evaluations. The kernel is the ARD Matérn 5/2
and the acquisition function is the EI [8, 10].

CMA-ES Perform 600 evaluations with 20 generations
where each generation consists of 30
individuals. 〈x〉(0)w = 0.5, σ (0) = 0.2. All
variables are scaled to [ 0, 1] [10].

Coordinate-search
method

Initialize x0 as the best point of the first 100
random search evaluations, then perform
optimization for up to 500 evaluations.
α = 0.5. All variables are scaled to [ 0, 1].

Nelder-Mead method Generate an initial simplex randomly, then
perform optimization for up to 600
evaluations (including initialization).
γ s = 1

2 , δ
ic = − 1

2 , δ
oc = 1

2 , δ
r = 1 and δe = 2.
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Fig. 7MNIST database of handwritten digits [21]

5.1 MNIST
The LeNet [1] hyperparameters are optimized by the five
methods tomeasure their performance. This network per-
forms a 10-class classification of the MNIST handwritten
digit database [21] (Fig. 7). Here, we use Caffe’s tutorial
implementation [22, 23]. This implementation uses a rec-
tified linear unit [24] as its activation function rather than
the sigmoid used in the original LeNet.
These methods are also applied to the optimization of

hyperparameters of the Batch-Normalized Maxout Net-
work in Network proposed by Chang et al. [25]. Note that
this network is deeper and has many more hyperparame-
ters to optimize than LeNet.
Tables 2, 3, 4, 5, 6, and 7 show the details of each

network, the fixed hyperparameters, the optimized hyper-
parameters, and the search ranges. Note that prepro-
cessing and augmentation of the training data are not
performed.

Table 2 LeNet network architecture [1]

Conv 1 Kernel size: 2, stride: 1, pad: 0

Pool 1 (MAX pooling) Kernel size: 2, stride: 2, pad: 2

Conv 2 Kernel size: 5, stride: 1, pad: 0

Pool 2 (MAX pooling) Kernel size: 2, stride: 2, pad: 0

FC 1

Table 3 LeNet fixed parameters

Name Description

Iteration 10,000

Batch size 64

Learning rate decay policy inv (gamma = 0.01, power = 0.75) [29]

Table 4 LeNet hyperparameters

Name Description Range

x1 Learning rate (= 0.1x1 ) [1, 4]

x2 Momentum (= 1 − 0.1x2 ) [0.5, 2]

x3 L2 weight decay [0.001, 0.01]

x∗4 FC1 units [256, 1024]

Integer parameters are marked with ∗

Table 5 Network architecture of Batch-Normalized Maxout
Network in Network [25]

Conv 1 Kernel size: 5, stride: 1, pad: 2, BN

MMLP 1-1 Kernel size: 1, stride: 1, pad: 0, k = 5, BN

MMLP 1-2 Kernel size: 1, stride: 1, pad: 0, k = 5, BN

Pool 1 (AVE pooling) Kernel size: 3, stride: 2, pad: 0, dropout

Conv 2 Kernel size: 5, stride: 1, pad: 2, BN

MMLP 2-1 Kernel size: 1, stride: 1, pad: 0, k = 5, BN

MMLP 2-2 Kernel size: 1, stride: 1, pad: 0, k = 5, BN

Pool 2 (AVE pooling) Kernel size: 3, stride: 2, pad: 0, dropout

Conv 3 Kernel size: 3, stride: 1, pad: 1, BN

MMLP 3-1 Kernel size: 1, stride: 1, pad: 0, k = 5, BN

MMLP 3-2 Kernel size: 1, stride: 1, pad: 0, k = 5, BN

Pool 3 (AVE pooling)

5.2 Age and gender classification
Gil and Tal proposed a CNN for age/gender classifica-
tion [26]. In these experiments, the hyperparameters of
this CNN are optimized by the five methods. This net-
work consists of three convolution layers and two fully
connected layers, receives an image, and outputs a gender
label or an age group label. We use the implementation
available on the project’s web page [27]. We test DNNs
using the Adience DB [28] for the age/gender classifica-
tion benchmark used in the literature [26] (Fig. 8). We
divide the dataset into five sets, train the network with
four sets, and test it with one set. Note that these pro-
cesses require significant calculation time; thus, in the
optimization process, cross validations are not performed.
We perform cross validation for only the optimal solution
among the optimal solutions of all methods and calculate
the cross-validated accuracy for comparison with results
in the literature [26].
Tables 8, 9, and 10 show the details of each network, the

fixed hyperparameters, the optimized hyperparameters,
and the search ranges. Note that, for this experiment, data
augmentation is conducted in a single-crop manner [26].

5.3 Results
The experiments are executed for one month using 32
modern GPUs. The experimental results are given in

Table 6 Fixed parameters of Batch-Normalized Maxout Network
in Network

Name Description

Iteration 20,000

Batch size 100

Learning rate decay policy Multistep (gamma = 0.1,
step value = {15, 000, 18, 000}) [29]
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Table 7 Batch-Normalized Maxout Network in Network
hyperparameters

Name Description Range

x1 Learning rate (= 0.1x1 ) [0.5, 2]

x2 Momentum (= 1 − 0.1x2 ) [0.5, 2]

x3 L2 weight decay [0.001, 0.01]

x4 Dropout 1 [0.4, 0.6]

x5 Dropout 2 [0.4, 0.6]

x6 Conv 1 initialization deviation [0.01, 0.05]

x7 Conv 2 initialization deviation [0.01, 0.05]

x8 Conv 3 initialization deviation [0.01, 0.05]

x9 MMLP 1-1 initialization deviation [0.01, 0.05]

x10 MMLP 1-2 initialization deviation [0.01, 0.05]

x11 MMLP 2-1 initialization deviation [0.01, 0.05]

x12 MMLP 2-2 initialization deviation [0.01, 0.05]

x13 MMLP 3-1 initialization deviation [0.01, 0.05]

x14 MMLP 3-2 initialization deviation [0.01, 0.05]

Fig. 8 Faces from the Adience benchmark for age/gender
classification [28]

Tables 11, 12, 13, and 14. In all experiments, the Nelder-
Mead method achieves both minimal loss and variance.
The small variance suggests that the initial values of
the method do not significantly affect the results. Fur-
thermore, the accuracy of the cross validation with the
best solution found by the Nelder-Mead method in gen-
der classification is 87.20% (±1.328024) and that for

Table 8 Network architecture of the age/gender classification
CNN [26]

Conv 1 Kernel size: 7, stride: 4, pad: 0

Pool 1 (MAX pooling) Kernel size: 3, stride: 2, pad: 0

Conv 2 Kernel size: 5, stride: 1, pad: 2

Pool 2 (MAX pooling) Kernel size: 3, stride: 2, pad: 0

Conv 3 Kernel size: 3, stride: 1, pad: 1

Pool 3 (MAX pooling) Kernel size: 3, stride: 2, pad: 0

FC 1 Dropout

FC 2 Dropout

FC 3

Table 9 Fixed parameters of the age/gender classification CNN

Name Description

Iteration 20,000

Batch size 50

Learning rate decay policy Step (gamma = 0.1, step size = 10000) [29]

age classification is 51.25% (±5.461970). These val-
ues are higher than previous state-of-the-art results
(86.8% (±1.4) and 50.7% (±5.1)) reported in the literature
[26]. The stability and search performance of this method
are magnificent.
The coordinate-search method also achieves good

results with LeNet and Batch-Normalized Maxout
Network in Network. However, the coordinate-search
method searches points using each vector of the pos-
itive basis; thus, convergence speed is reduced as the
number of dimensions increases. This appears to be the
reason why the coordinate-search method does not work
for the age/gender classification CNN, which has more

Table 10 Hyperparameters of the age/gender classification CNN

Name Description Range

x1 Learning rate (= 0.1x1 ) [1, 4]

x2 Momentum (= 1 − 0.1x2 ) [0.5, 2]

x3 L2 weight decay [0.001, 0.01]

x4 Dropout 1 [0.4, 0.6]

x5 Dropout 2 [0.4, 0.6]

x∗6 FC 1 units [512, 1024]

x∗7 FC 2 units [256, 512]

x8 Conv 1 initialization deviation [0.01, 0.05]

x9 Conv 2 initialization deviation [0.01, 0.05]

x10 Conv 3 initialization deviation [0.01, 0.05]

x11 FC 1 initialization deviation [0.001, 0.01]

x12 FC 2 initialization deviation [0.001, 0.01]

x13 FC 3 initialization deviation [0.001, 0.01]

x14 Conv 1 bias [0, 1]

x15 Conv 2 bias [0, 1]

x16 Conv 3 bias [0, 1]

x17 FC 1 bias [0, 1]

x18 FC 2 bias [0, 1]

x∗19 Normalization 1 localsize (= 2x19 + 3) [0, 2]

x∗20 Normalization 2 localsize (= 2x20 + 3) [0, 2]

x21 Normalization 1 alpha [0.0001, 0.0002]

x22 Normalization 2 alpha [0.0001, 0.0002]

x23 Normalization 1 beta [0.5, 0.95]

x24 Normalization 2 beta [0.5, 0.95]

Integer parameters are marked with ∗
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Table 11 MNIST results (LeNet)

Method Mean loss Min loss

Random search 0.005411 (±0.001413) 0.002781

Bayesian optimization 0.004217 (±0.002242) 0.000089

CMA-ES 0.000926 (±0.001420) 0.000047

Coordinate-search method 0.000052 (±0.000094) 0.000002

Nelder-Mead method 0.000029 (±0.000029) 0.000004

Method Mean accuracy (%) Accuracy with
min loss (%)

Random search 98.98 (±0.08) 99.06

Bayesian optimization 99.07 (±0.02) 99.25

CMA-ES 99.20 (±0.08) 99.30

The coordinate-search method 99.26 (±0.05) 99.35

The Nelder-Mead method 99.24 (±0.04) 99.28

The smallest loss for each experiment is indicated by bold-faced font

hyperparameters. Thus, we should use the Nelder-Mead
method rather than the coordinate-search method. As
demonstrated in the literature [9], CMA-ES is superior
to random search because it finds better parameters ear-
lier. Despite using the same hyperparameters for Bayesian
optimization, the method works well for age estimation
but not for other tasks. This indicates that, for Bayesian
optimization, hyperparameters should be adjusted care-
fully depending on the given task.
The mean loss graphs (Figs. 9, 10, 11 and 12) show

that the Nelder-Mead method rapidly finds a good solu-
tion and converges faster than the other methods. We
anticipate that the objective function for hyperparame-
ter optimization is multimodal, and many local optima
that achieve similar results exist. We confirmed this
property via additional experiments that optimized the

Table 12 MNIST Results (Batch-Normalized Maxout Network in
Network)

Method Mean loss Min loss

Random search 0.045438 (±0.002142) 0.042694

Bayesian optimization 0.045636 (±0.001197) 0.044447

CMA-ES 0.045248 (±0.002537) 0.042250

Coordinate-search method 0.045131 (±0.001088) 0.043639

Nelder-Mead method 0.044549 (±0.001079) 0.043238

Method Mean accuracy (%) Accuracy with
min loss (%)

Random search 99.56 (±0.02) 99.58

Bayesian optimization 99.47 (±0.05) 99.59

CMA-ES 99.49 (±0.14) 99.59

Coordinate-search method 99.48 (±0.04) 99.53

Nelder-Mead method 99.53 (±0.00) 99.54

The smallest loss for each experiment is indicated by bold-faced font

Table 13 Gender classification results

Method Mean loss Min loss

Random search 0.001732 (±0.000540) 0.000984

Bayesian optimization 0.00183 (±0.000547) 0.001097

CMA-ES 0.001804 (±0.000480) 0.001249

Coordinate-search method 0.002240 (±0.001448) 0.000378

Nelder-Mead method 0.000395 (±0.000129) 0.000245

Method Mean accuracy (%) Accuracy with
min loss (%)

Random search 87.93 (±0.24) 88.21

Bayesian optimization 88.07 (±0.27) 87.85

CMA-ES 88.20 (±0.38) 88.55

Coordinate-search method 87.04 (±0.52) 87.72

Nelder-Mead method 88.38 (±0.47) 88.83

The smallest loss for each experiment is indicated by bold-faced font

hyperparameters of the gender classification CNN, the
network which has the largest search space, using the
Nelder-Mead method. The optimized hyperparameter
settings after 600 evaluations of each experiment are
shown using the parallel coordinates plot in Fig. 13. In
the figure, points in the search space are represented as
polylines with vertices on parallel axes. The position of
the vertex on the ith axis corresponds to the value of the
hyperparameter xi. The polylines exhibiting small losses
are shown in dark colors.
Experimental results showed that the Nelder-Mead

method converged to different points every time and
the objective function was almost multimodal. Differ-
ent hyperparameters settings achieved similar losses.
From Table 13 and Fig. 13, we deduce that many local
optima that achieve similar results exist. In such cases,

Table 14 Age classification results

Method Mean loss Min loss

Random search 0.035694 (±0.006958) 0.026563

Bayesian optimization 0.024792 (±0.003076) 0.020466

CMA-ES 0.031244 (±0.010834) 0.016952

Coordinate-search method 0.032244 (±0.006109) 0.024637

Nelder-Mead method 0.015492 (±0.002276) 0.013556

Method Mean accuracy (%) Accuracy with
min loss (%)

Random search 57.18 (±0.96) 57.90

Bayesian optimization 56.28 (±1.68) 57.19

CMA-ES 57.17 (±0.80) 58.19

Coordinate-search method 55.06 (±2.31) 56.98

Nelder-Mead method 56.72 (±0.50) 57.42

The smallest loss for each experiment is indicated by bold-faced font
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Fig. 9Mean loss of all executions for each method per iteration
(LeNet)

the Nelder-Mead method tends to directly converge to
a close local optimum without being influenced by the
objective function values of distant points. In contrast,
other methods perform a global search, e.g., Bayesian
optimization and CMA-ES try to find potential candi-
dates of global optima and require more iterations to
find a local optimum in comparison to the Nelder-Mead
method.
According to the poor hyperparameter setting detection

rates (Tables 15, 16, 17, and 18), on average, approxi-
mately 8, 1, 33, and 26% of executions in each experiment
are detected as having poor hyperparameter settings and
optimization is accelerated in proportion to the detec-
tion rate. In particular, the CNN for age/gender clas-
sification tends to be very sensitive to hyperparameter
settings.
Note that the Nelder-Mead method rarely generates

poor hyperparameter settings because of its strategy, e.g.,
reflection moves the simplex in a direction away from the
point of poor hyperparameter settings.

Fig. 10Mean loss of all executions for each method per iteration
(Batch-Normalized Maxout Network in Network)

Fig. 11Mean loss of all executions for each method per iteration
(gender classification CNN)

From the above results, we conclude that the Nelder-
Mead method is the best choice for DNN hyperparameter
optimization.

6 Conclusions
In this study, we tested methods for DNN hyperparameter
optimization. We showed that the Nelder-Mead method
achieved good results in all experiments. Moreover,
we achieved state-of-the-art accuracy with age/gender
classification using the Adience DB by optimizing the
CNN hyperparameters proposed in [26].
Complicated hyperparameter optimizationmethods are

difficult to implement and have sensitive hyperparam-
eters, which affects their performance. Therefore, it is
difficult for non-experts to use thesemethods. In contrast,
the Nelder-Mead method is easy to use and outperforms
such complicated methods in many cases.
In our experiments, we optimized the hyperparameters

of DNNs for character recognition and age/gender clas-
sification. These tasks are important and have been well

Fig. 12Mean loss of all executions for each method per iteration (age
classification CNN)
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Fig. 13 Parallel coordinates plot of the optimized hyperparameters of the gender classification CNN

Table 15 Poor hyperparameter setting detection rate for each
method (LeNet)

Method Detection rate

Random search 0.144722 (±0.010690)

Bayesian optimization 0.066041 (±0.013354)

Coordinate-search method 0.080674 (±0.041299)

CMA-ES 0.111304 (±0.098500)

Nelder-Mead method 0.003151 (±0.003056)

Table 16 Poor hyperparameter setting detection rate for each
method (Batch-Normalized Maxout Network in Network)

Method Detection rate

Random search 0 (±0)

Bayesian optimization 0.004943 (±0.001991)

Coordinate-search method 0.048941 (±0.054884)

CMA-ES 0 (±0)

Nelder-Mead method 0 (±0)

known for a long time. However, it is desirable to evaluate
the proposed method using the generic object recogni-
tion data set. Therefore, in future, we plan to evaluate
the proposed method using other data sets. A detailed
analysis of the dependency on initial parameters and the

Table 17 Poor hyperparameter setting detection rate for each
method (gender classification CNN)

Method Detection rate

Random search 0.506177 (±0.015931)

Bayesian optimization 0.445244 (±0.005658)

Coordinate-search method 0.274671 (±0.198506)

CMA-ES 0.360734 (±0.091648)

Nelder-Mead method 0.051413 (±0.006113)

Table 18 Poor hyperparameter setting detection rate for each
method (age classification CNN)

Method Detection rate

Random search 0.444667 (±0.039355)

Bayesian optimization 0.355933 (±0.008577)

Coordinate-search method 0.147418 (±0.019866)

CMA-ES 0.317533 (±0.207479)

Nelder-Mead method 0.040334 (±0.004082)

optimization of categorical variables will be also the focus
of future work.
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